<|lI!

z/NM

Diagnosis Guide

Version 6 Release 3

GC24-6187-02

Note:
FBefore using this information and the product it supports, read the information in|[“Notices” on page 255,

This edition applies to version 6, release 3, modification 0 of IBM z/VM (product number 5741-A07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces GC24-6187-01.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures.
Tables

About This Document .
Intended Audience .
Where to Find More Informatlon

How to Send Your Comments to IBM.

Summary of Changes.
GC24-6187-02, z/VM Version 6 Release 3
Hiperdispatch Support .
Large Memory Dump Support .
GC24-6187-01, z/VM Version 6 Release 2 . .
Support for z/VM Single System Image Clusters
GC24-6187-00, z/VM Version 6 Release 1 . .

Chapter 1. Introduction to Debugglng
How to Start Debugging

Does a Problem Exist? .

Identifying the Problem.

Analyzing the Available Data .

Determining the Cause .

Data You Need Before Calling IBM for Ass1stance .

How to Use z/VM Facilities to Debug
Abends.

CP Abend . .

CF Service Machme Abend .

CMS Abend . .

SFES or CRR Server Abend

GCS Abend

TSAF Abend .

AVS Abend .

Virtual Machine Abend (Other than CMS)
Unexpected Results. e
Loops .

CP Dlsabled Loop .

Virtual Machine Disabled Loop

Virtual Machine Enabled Loop
Wait States R

CP Disabled Walt

CP Enabled Wait .

Virtual Machine Disabled Walt

Virtual Machine Enabled Wait .

Hang Conditions

System Hangs

User Hangs
Use of z/VM Debuggmg Commands

Chapter 2. Debugging Interactively

Commands That Display and Dump Machine Data .

Terminal Output.
Printer Output

© Copyright IBM Corp. 1991, 2013

. Xi

. X
. xiil
. xiii

. XV

. xvii
. Xvii
. Xxvii
. Xvil
. Xxvil
. Xvii
. Xxvii

N O Ok WN — =,

.13
.13
.14
. 14
.14
.14
. 14
. 14
. 15
. 15
. 16
. 16
.17
.17
.17
.18
. 18
. 19
. 20
. 20
. 20
.21
.21

. 23

.23
.24
. 25

iii

Commands That Set and Query System Features, Conditions, and Events26

Commands That Monitor Events .. .27
Controlling the Trace Information .28
Restricting the Trace to an Address Range .2
Selectivity N 10
Tracing Successful Events]
Tracing Storage Alteration . 00000003
The TRACE CMD Option3
Stopping the TRACE T 2

Commands That Alter the Contents of Storage . G ¥4
Altering Contents of Virtual Machine Storage (STORE Guest Command) < v
Altering Contents of Host Storage (STORE Host Command)33
Simulating the Hardware Store Status Facility (STORE STATUS).33

Commands to Collect and Analyze System Information .35

What to Do If Your Program Loops . .)

Debugging with CP after a Program Check G [

Chapter 3. UsmgTracestoDebug e 14

Locating the CP Trace Table C e
Trace Entries . . . e
Limiting the Trace Entrles Recorded .o N
Tracing I/0O, Data Code Paths, and Virtual Machmes e 3 |
I/O Trace Example L L.k
Trace Table Example ... A
Data Trace Example 1 L Lo 4A2
Data Trace Example 2)
Saving Trace Data on Tape or DASD e
Viewing the Trace Tables .4

Chapter4Creat|ngaDump..........................47

Types of Dumps. . . e V4
Setting Up the System for a Dump e
Dumping Real or Virtual Machine Data . . . e

Commands That Dump Real or Virtual Machme Data e
Stand-alone Dump Utility .5h0

Chapter 5. Debugging CP. « &+ « v = v v v &« v51

Debugging CP in a Virtual Machine .b
Abend Dumps . . et
Reading CP Abend Dumps s
Using the Assert Facility . . . g 2
Reading the Dump with the VM Dump Tool e e e B2
Printing Dump Information from the VM Dump Tool .53
Looking at Key Control Blocks .53
HCPPFXPG: The Prefix Page . . o 7
HCPSYSCM: The System Common Area .o o o)
HCPVMDBK: The Virtual Machine Descriptor Block)
HCPRDEV: The Real Device Control Block .5
HCPIORBK: The I/O Request and Response Block .5
HCPVDEV: The Virtual Device Block. .5
HCPCPEBK: The CP Execution Block. . . 60
HCPSAVBK and HCPSVGBK: The Save Area Block)
HCPFRMTE: The Frame Table Entry .6l
VMDUMP Records: Format and Content .62

Chapter 6. Debugging CF Service Machine Problems.63

Determining the Status of the CF Service Machine . . . P
Steps to Follow When CF Service Machine Abend Occurs e)
Finding the CF Service Machine Dump .04
Processing a CF Service Machine Dump. .64

iV z/VM V6.3 Diagnosis Guide

Diagnosing Problems for CF Service Machines.

Chapter 7. Debugging CMS .

Debugging Commands . .
Using the SVCTRACE command .

Tracing Capabilities in EXECs .

Nucleus Load Map .

Module Load Map .

CMS Abend Processing
Finding the Reason for the CMS Abend
Using CMS to Debug . .

Setting Machines to Automatlcally Create Dumps
Generating CMS Abend Dumps
Reading CMS Abend Dumps .
Creating Dumps in Case of Messages.
Printing a CMS Dump File .

Commands That Alter the Contents of Storage
Diagnosing SFS Related Application Errors .

Chapter 8. Debugging CMS Pipelines

Debugging a Program Exception in CMS Pipelines .
Calculating the Displacements of the Failing Module
Recreating the Problem
Examples .

Debugging Incorrect Output From CMS Plpehnes
Adding Temporary Stages to Write Out the Data .
Using the CMS Pipelines TRACE Option

Debugging a CMS Pipelines Stall .

Example o

Chapter 9. Debugging the SFS Server or CRR Recovery Server .

Summary of Steps to Follow When a Server Abend Occurs
Using the Console Log .
Using Server Dumps to Diagnose Problems

Creating a Server Dump .

Processing a Server Dump

Diagnosing a Server Dump .

Printing a Server Dump .

Using System Trace Data to Dragnose Problems
Setting Internal Tracing
Setting External Tracing

Chapter 10. Debugging GCS
Internal Tracing Facilities . .
Using the ITRACE Command and GTRACE Macro
Formats of Internal Trace Entries . o
External Tracing Facilities
Using the TRSOURCE Command
Using the TRSAVE Command .
Using the CP TRACERED Utility .
Using the QUERY TRFILES Command .
General Trace Information . .
Formatting and Displaying External Trace Records
Examples of Formatted External Trace Table Entries
Dumping Facilities .
The Common Dump Recerver
Rules of Authorization
Interactive Debugging Support .
Using Authorized Control Program (CP) Commands .
Analyzing Dumps. . e

. 64

. 65

. 65
. 66
. 67
. 69
. 69
. 69
. 69
. 74
.74
. 74
.75
. 76
. 76
. 76
.76

. 81

. 81
. 82
. 82
. 83
. 87
. 87
. 88
. 88
. 89

. 91

.91
.92
. 95
. 95
. 96
. 96
. 97
. 97
.97
.97

. 99

. 99

. 100
. 100
. 117
. 117
. 119
. 119
. 120
. 120
. 120
. 122
. 123
. 123
. 123
. 124
. 124
. 124

Contents

A\

Dumping VSAM Information .
Creating GCS Dumps
The GDUMP Command .
The SDUMP Macro
The SDUMPX Macro .
The ABEND DUMP Macro . .
The SYSTEM RESTART Command .
The VMDUMP Command .
Preserving Common Storage
How to Find the GCS Virtual Machme That Created a Dump
Using the GCS Trace Facilities . o
ITRACE . . .
Locating the GCS Internal Trace Table .
Using the Trace Table.
ETRACE .
GTRACE .
Processing Abends
The Abend Work Area
Program Checks
Processing GCS Dumps with the Dump Vlewmg Fac111ty
Information Used by the Dump Vrewmg Facrhty
NUCON and SIE . .o
Virtual Machine Control Block .
How to Determine the User ID That Created a Trace Entry
How to Locate the GCS Common Lock.
Task Management .
Task Block
State Block .
WAIT COUNT Freld in a State Block
LINK Block .
SVC Block
Asynchronous Exrt Block (AEB)
The Dispatch Queue .
How to Find the Task ID Table
How to Find Which Task Is Running
Tracing Task and Program Management
Program Management
Task Load List . .
Virtual Machine Load Llst . .
How to Find Where a Program Is Loaded .
GCS Load Error . e
IUCV . .
Debugging Apphcatlons
Tracing IUCV .
The IUCV Anchor Block (IUCBK)
The User ID Blocks (IUCID)
The Path ID Table (IUCPT) .
How to Find Information about a Path
Storage Management .
Storage Anchor Blocks
Description of the Storage Anchor Control Blocks (SACBs)
Important Fields in Major SACBs. e
Important Fields in Minor SACBs
Checking for Storage Fragmentation.
Scanning the Major and Minor SACBs .
Checking Free Storage on Any Given Page
Finding the Key for a Given Page
Control Blocks Describing the Storage Owned by a Task
How to Find the Storage Belonging to a Given Task
How to Check What Subpools Belong to a Given Task
System-Wide Description of Storage . .

Vi z/VM V6.3 Diagnosis Guide

. 125
. 126
. 126
. 126
. 126
. 126
. 127
. 127
. 127
. 127
. 128
. 128
. 128
. 130
. 131
. 131
. 131
. 132
. 132
. 132
. 133
. 134
. 135
. 135
. 136
. 136
. 136
. 136
. 137
. 138
. 138
. 138
. 139
. 140
. 141
. 141
. 142
. 143
. 143
. 145
. 146
. 146
. 147
. 147
. 147
. 147
. 148
. 149
. 149
. 150
. 151
. 151
. 151
. 152
. 152
. 152
. 153
. 153
. 155
. 156
. 156

System-Wide Description of TSHBs and GSBBs .
Common Storage Management Problems .
Tracing Storage Management .
General 1/0.
IOSAVE . .
The Subchannel ID Table (SIDTABLE)
The General I/0 Table (GIOTB) .
1/0 Interrupt Handling .
Interrupt Control Blocks.
How to Find What Pages Are Locked by PGLOCK
Finding Pages Not Paged in After a Page Fault .
How to Find the Characteristics of a Device .
I/0 Debugging.
Trace Table Entries
Recreating the Problem .
Command and Console Support .
LOADCMD Command .
NUCON Information.
SIE Information
CMDBUF.
WQE and ORE .
VSAM. S
Data Compression Serv1ces
NUCON Changes .
VAD Information .
Boundary Box Usage .
VTAM/VSAM Work Areas .
Helpful Hints for VSAM debuggmg
Debugging Data Compression Errors .
An Example of Control and Data Flow in GCS .

Chapter 11. Debugging TSAF

Summary of Steps to Follow When a TSAF Abend Occurs

Using the Console Log .

Using TSAF Dumps to Dlagnose Problems
Creating the TSAF Map . . .
Creating a TSAF Dump .

Processing a TSAF Dump
Diagnosing a TSAF Dump . .

Using System Trace Data to Diagnose Problems
Setting External Tracing .

Viewing TSAF Trace Entries

Interactive Service Queries .

Chapter 12. Debugging AVS .
Using AVS Dumps to Diagnose Problems .
Obtaining the GCS Load Map .
Creating an AVS Dump .
Processing an AVS Dump
Diagnosing an AVS Dump . .
Using System Trace Data to Diagnose Problems
Setting Internal Tracing .
Setting External Tracing .
Viewing AVS Trace Entries .
Interactive Service Queries . .
Summary of Steps to Follow When an AVS Abend Occurs

Appendix A. Problem- Specmc Checklists
CP Abend Checklist .
CMS Abend Checklist

. 156
. 157
. 158
. 158
. 159
. 160
. 161
. 162
. 162
. 163
. 163
. 163
. 164
. 164
. 165
. 165
. 165
. 166
. 166
. 167
. 168
. 169
. 169
. 170
. 170
. 171
. 171
. 172
. 172
. 173

. 175
. 175
. 176
. 176
. 177
. 177
. 177
. 178
. 179
. 179
. 180
. 181

. 183
. 183
. 183
. 183
. 184
. 184
. 185
. 185
. 186
. 186
. 187
. 188

. 189

. 189
. 189

Contents Vil

GCS Abend Checklist.

RSCS Abend Checklist

CP Wait State Checklist .

Virtual Machine Wait State Checkhst
RSCS Wait State Checklist .

Application Program checklist for Unexpected Output

Checklists for Performance Problems
An Infinite Loop in CP . .
An Infinite Loop in a Virtual Machme .
An Infinite Loop in RSCS
Hardware Failure .
Inadequate System Parameters

Appendix B. GCS Control Blocks.
NUCON — GCS Nucleus Constant Area .
SIE — NUCON Extension .
TBK — Task Block.
STBLK — State Block.
SMAB — Storage Management
ANCH — Storage Anchor Block .

EXTWA — External Interrupt Handler Work Area .

SVCWA — SVC Interrupt Handler Work Area
PGMWA — Program Interrupt Work Area.
VMCB — Virtual Machine Control Block .

Appendix C. Trace Table Codes

Notices . -
Privacy Policy Considerations .
Trademarks .

Glossary

Bibliography. .o
Where to Get z/VM Information .
z/VM Base Library .o
z/VM Facilities and Features .
Prerequisite Products .

Index .

viii z/VM V6.3 Diagnosis Guide

. 189
. 189
. 190
. 190
. 190
. 191
. 191
. 191
. 191
. 191
. 191
. 191

. 193
. 193
. 197
. 199
. 201
. 203
. 205
. 206
. 206
. 207
. 207

. 209

. 255
. 257
. 257

. 259

. 261
. 261
. 261
. 262
. 263

. 265

Figures

—_
CORPNT BN

I o S S S G S Y
SARRSLEE IS

Problem Inquiry Data Sheet .

Trace Table Pages for Each Processor .

Format of a 32-byte Trace Entry.

Sample Trace Entry in a CP Abend Dump

Tracing Events for Specific and Nonspecific Users
Using a Radix Tree to Locate an RDEV Block

Server Console Log (Operation Exception Occurred) .
Server Console Log (Protection Exception Occurred) .

Server Console Log (File Pool Server System Error Occurred) .

The Task ID Table (TIDTB) .

TSHB and GSBB Control Blocks

CCW Mapping .

Sample GCS Group

Sample TSAF Console Log . .
Format of a 32-byte CP Trace Table Entry .
Format of a 64-byte CP Trace Table Entry .

© Copyright IBM Corp. 1991, 2013

.12
. 37
. 38
. 38
. 40
. 57
.93
. 94
. .9
. 141
. 154
. 167
. 173
. 176
. 209
. 210

ix

X z/VM V6.3 Diagnosis Guide

Tables

—_
CORPNT BN

I o S S S G S Y
SARRSLEE IS

z/VM Problem Types ..

Non-z/ Architecture mode guest.

z/ Architecture mode guest

Approximate Number of Trace Entrles per Cylmder or per 1000 Blocks
Contents of the GCS Nucleus Constant Area (NUCON) .
Contents of the NUCON Extension (SIE)

Contents of Task Blocks . A

Contents of State Blocks .

Contents of Storage Management .

Contents of Storage Anchor Blocks

Contents of the External Interrupt Handler Work Area (EXTWA)
Contents of the SVC Interrupt Handler Work Area (SVCWA)
Contents of the Program Interrupt Work Area (PGMWA) .

Contents of the Virtual Machine Control Block (VMCB)

Trace codes for 32-byte entries .

Trace codes for 64-byte entries (Format 2)

© Copyright IBM Corp. 1991, 2013

. 34
. 34
. .45
. 193
. 197
. 199
. 201
. 203
. 205
. 206
. 206
. 207
. 207
. 212
. 238

xi

Xii z/VM V6.3 Diagnosis Guide

About This Document

This document provides diagnostic guidance information to help IBM® customers
identify, report, solve, and collect information about problems in the z/ VM®
operating system.

Links to Other Online Documents

The online version of this document contains links to other online documents.
These links are to editions that were current when this document was published.
However, due to the nature of some links, if a new edition of a linked document
has been published since the publication of this document, the linked document
might not be the latest edition. Also, a link from this document to another
document works only when both documents are in the same directory.

Intended Audience

This information is intended for system programmers, system analysts, users who
will do diagnosis of z/VM, and users collecting data for diagnosis.

This document assumes that you understand the hardware controls and features of
your installation. It also assumes that you can use assembler language and have
experience with programming concepts and techniques.

Where to Find More Information

You can find more information about VM and diagnosis in the publications listed
in the [“Bibliography” on page 261

© Copyright IBM Corp. 1991, 2013 xiii

Xiv z/VM V6.3 Diagnosis Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
1. Send an email to mhvrcfs@us.ibm.com.

2. Go to IIBM z/VM Reader's Comments| (www.ibm.com/systems/z/o0s/zvm/
zvmforms/webgs.html).

3. Malil the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department HGMA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US.A.

4, Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
* Your name and address
* Your email address
* Your telephone or fax number
* The publication title and order number:
z/VM V6.3 Diagnosis Guide
GC24-6187-02
* The topic name or page number related to your comment
* The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will use the personal information that you supply
only to contact you about the issues that you submit to IBM.

If You Have a Technical Problem

Do not use the feedback methods listed above. Instead, do one of the following:
* Contact your IBM service representative.
* Contact IBM technical support.

* See IBM: z/VM Service Resources|(www.ibm.com/vm/service/).

* Go to [IBM Support Portal| (www.ibm.com/support/entry/portal/Overview/).

© Copyright IBM Corp. 1991, 2013 XV

http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.ibm.com/vm/service/
http://www.ibm.com/support/entry/portal/Overview/

XVl z/VM V6.3 Diagnosis Guide

Summary of Changes

This document contains terminology, maintenance, and editorial changes. Technical
changes are indicated by a vertical line to the left of the changes. Some product
changes might be provided through service and might be available for some prior
releases.

GC24-6187-02,

z/VM Version 6 Release 3

This edition includes changes to support product changes provided or announced
after the general availability of z/VM V6.3.

Hiperdispatch Support

New trace table entries have been added for this support:
* Input unpark mask - 3610

* Switch master - 3611

* Enter parked wait state - 3612

* Unpark processor - 3613

* SIGP instruction AEO1 replaces AEOO

* Time stamp trace entry FFFD replaces FFFE.

Large Memory Dump Support

z/VM's dump capability is increased to support real memory sizes up to a
maximum of 1 TB in size.

e Trace codes 4005 - 4008 are obsolete and removed.

GC24-6187-01,

z/VM Version 6 Release 2

This edition includes changes to support the general availability of z/VM V6.2.

Support for z/VM Single System Image Clusters

A z/VM single system image (SSI) cluster is a multisystem environment in which
the z/VM member systems can be managed as a single resource pool and running
virtual servers (guests) can be relocated from one member to another. For more
information about the SSI environment and setting up SSI clusters, see [z/VM: CP
[Planning and Administration| To use the functions that define and maintain an SSI
cluster, the IBM z/VM Single System Image Feature must be licensed and enabled.

The following trace codes have been added to |Appendix C, “Trace Table Codes,”|
for this support:

* ISFC: 700D through 7027

* SSI Cluster Operations: 1901 through 1915
* VAA: 2000 through 2005

GC24-6187-00,

z/VM Version 6 Release 1

This edition includes changes or additions to support the general availability of
z/VM V6.1

© Copyright IBM Corp. 1991, 2013 xvii

xviil z/VM V6.3 Diagnosis Guide

Chapter 1. Introduction to Debugging

z/VM manages the resources of a single computer such that multiple computing
systems appear to exist. Each “virtual computing system”, or virtual machine, is
the functional equivalent of a real processor. Therefore, the person trying to
determine the cause of a z/VM software problem must consider these separate
areas:

¢ The Control Program (CP), which controls the resources of the real machine

* The virtual machine operating system running under the control of CP, such as
CMS (Conversational Monitor System) or GCS (Group Control System)

* The problem program that was running under control of the virtual machine
operating system when the problem occurred.

See:

+ |Chapter 2, “Debugging Interactively,” on page 23| for information on how to
debug problems within a virtual machine

+ |Chapter 5, “Debugging CP,” on page 51| for information on CP

* |Chapter 6, “Debugging CF Service Machine Problems,” on page 63| for
information on CF service machines

* |Chapter 7, “Debugging CMS,” on page 65| for information on CMS

+ |Chapter 8, “Debugging CMS Pipelines,” on page 81|for information on CMS
Pipelines

+ |Chapter 9, “Debugging the SFS Server or CRR Recovery Server,” on page 91|for
information on the SFS and CRR server machines

+ |Chapter 10, “Debugging GCS,” on page 99| for information on GCS
* |Chapter 11, “Debugging TSAF,” on page 175 for information on TSAF
* |Chapter 12, “Debugging AVS,” on page 183|for information on AVS.

This guide contains information about using the Dump Viewing Facility and VM
Dump Tool for debugging. For complete information explaining how to use the
Dump Viewing Facility, see |z/VM: Dump Viewing Facility} For complete information
explaining how to use the VM Dump Tool, see [z/VM: VM Dump Tool}

If a problem is caused by a guest operating system, see the document pertaining to
that operating system for specific information.

If it becomes necessary to apply a Program Temporary Fix (PTF) to a component of
2/ VM, see [z/VM: Service Guide| for information on applying PTFs.

How to Start Debugging
A good approach to debugging is to:

1. Recognize that a problem exists
2. Identify the problem type and the area affected

3. Analyze the data you have available, collect more data if you need it, then
isolate the data that pertains to your problem

4. Determine the cause of the problem and correct it, or report it to the
appropriate IBM Support Center.

© Copyright IBM Corp. 1991, 2013 1

Introduction to Debugging

2

Does a Problem Exist?

The most common problems occurring on your z/VM system or virtual machine
are:

* Abnormal end (abend)

* Unexpected or incorrect result

* Infinite loop

* Wait state

¢ Hang condition

* Slow performance.

Abnormal End

The most obvious indication of a problem is the abnormal end (abend) of a
program. An abend occurs when an error condition that cannot be resolved by the
system causes a program to end prematurely. Whenever a program abnormally

ends, a message is issued. This message provides information that can help you
isolate the problem. A dump often accompanies an abnormal end. See

En Eaée 13| for a description of the various types of abends and their possible

causes.

Unexpected or Incorrect Result

Another obvious indication of a problem is unexpected or incorrect output or
result. If your output is missing, incorrect, or in a different format than expected, a
problem exists. For more information, see[“Unexpected Results” on page 15

Infinite Loop

A loop is a set of instructions that are run repeatedly as long as one or more
conditions are present. However, when the condition that is supposed to be
satisfied in the loop is never reached, an infinite loop occurs. If your program takes
longer to run than anticipated, or if your output is repeated more than expected,
your program may be in an infinite loop. For a description of different types of
loops, see [‘Loops” on page 16.|

Wait State

A z/VM system or virtual machine is in a wait state between the time the system
asks for data and begins to receive it. No other processing can occur in a system or
virtual machine that is in a wait state. When the system or virtual machine is in a
disabled wait state, it accepts no incoming data. When the system or virtual
machine is in an enabled wait state, it continues to accept incoming data. Enabled
wait states occur frequently and are quite easily resolved or resolve themselves.
Disabled wait states are not easily resolved and almost always signal a serious
problem, but often a message is issued alerting you to a disabled wait. If your
program is taking longer than expected to run, the virtual machine may be in a
wait state. See [“Wait States” on page 17|for a closer look at the common types of
wait states.

Hang Condition

A hang condition occurs when either CP cannot continue processing or a virtual
machine cannot be dispatched. As a result, z/VM halts processing. For more
information, see [“Hang Conditions” on page 20.|

Slow Performance

Your system is not limited to the problems listed above. Other problems that are
not easily determined may appear to slow the system's performance or cause
unproductive processing time. These can be caused by poor system tuning or
problems with your hardware. See |z/VM: Performancd for information about system
tuning and performance.

z/VM V6.3 Diagnosis Guide

Identifying the Problem

Identifying problems is not always easy. An abnormal end is indicated by an error
message. Unexpected results become apparent after the output is examined. Loops,
wait state conditions, and hang conditions may not be as easy to identify as an

abend or unexpected results.

Introduction to Debugging

summarizes problem types and the areas where they may occur.

Table 1. z/VM Problem Types

Problem Type

Where Problem Occurs

Distinguishing Characteristics

Abend

CP

CF service machine
CMS

GCS

TSAF

AVS

For a complete discussion of reasons for abends and
system programmer's actions, see the CMS, CP, GCS,
TSAFE, and AVS abend code charts in the appropriate
component of the messages and codes documents.

Virtual machine abend (other
than CMS)

When z/0S® or VSE abnormally ends on a virtual
machine, the messages issued and the dumps taken
are the same as they would be if z/OS® or VSE
abnormally ended on a real machine.

CP may stop a virtual machine if an irrecoverable
machine check occurs in that virtual machine. The
system operator receives a message at the processor
console. Also, the virtual machine user is notified
that his virtual machine was terminated.

Unexpected Results

cP

If an operating system runs properly on a real
machine, but not properly with CP, a problem exists.
Inaccurate data in files, such as spool files, is an
error.

Virtual machine

If a program runs properly under the control of a
particular operating system on a real machine, but
does not run correctly under the same operating
system with CP, a problem exists.

Wait CP For a complete discussion of CP and loader wait
state codes, see|z/VM: CP Messages and Codes| See
[z/VM: System Operation for stand-alone dump codes.

Loop CP disabled loop The processor console wait light is off. The problem

state bit of the real PSW is off. No I/O interrupts are
accepted.

Virtual machine disabled loop

The program is taking longer to run than anticipated.
Signaling attention from the disabled loop terminal
does not cause an interrupt in the virtual machine.
The virtual machine operator cannot communicate
with the virtual machine's operating system by
signaling attention.

Virtual machine enabled loop

Excessive processing time is often an indication of a
loop. Use the CP QUERY TIME command to check
the elapsed processing time. If time has elapsed,
periodically display the virtual PSW and check the
instruction address. If the same instruction, or series
of instructions, continues to appear in the PSW, a
loop probably exists.

Chapter 1. Introduction to Debugging 3

Introduction to Debugging

Table 1. z/VM Problem Types (continued)

Problem Type

Where Problem Occurs Distinguishing Characteristics

Performance

System hang z/VM cannot complete any tasks. No 1/0O interrupts
are accepted.

User hang The program is taking longer to run than anticipated.
No I/0O interrupts are accepted.

Immediate signs of problems within a user's virtual machine are:
* Return codes
* Error messages.

Return Codes

A return code is a number generated by the software associated with a computer
program. This return code indicates to your program the condition that arose when
your machine tried to carry out the program. Based on this condition, the return
code influences your program in determining how subsequent processing of your
overall task should proceed.

You must design your program to respond to specific return codes in specific
ways. Your z/VM system—its system programming—is no different. Depending
upon the return code received from a program in its system software (or, for that
matter, in an application program that you are running on z/VM), your system is
programmed to react in a certain way.

Return codes differ in severity. Some conditions are handled more smoothly than
others.

For an explanation of the meaning of individual return codes, see the appropriate
component of the messages and codes documents.

Messages

A message is a sentence or phrase transmitted by z/VM that describes a situation
or problem the system encountered while processing an instruction or command.
Like a return code, it describes a situation and influences a reaction to it. Unlike a
return code, which is generated for the benefit of a running computer program, a
message is issued for the benefit of the person who wrote the program or issued
the command.

z/VM has many messages and is programmed to generate a particular one when a
given situation or problem occurs.

Messages consist of a message identifier (for example, DMSACCO017E) and message
text. The identifier distinguishes one message from another. The text is a phrase or
sentence which either describes a condition that has occurred, or requests a
response from the user.

For an explanation of individual messages, see the appropriate component of the
messages and codes documents.

Analyzing the Available Data

Sources that are available to help identify and correct a problem include but are
not limited to:

e A dump

* A nucleus load map (NUCMAP)

4 z/VM V63 Diagnosis Guide

Introduction to Debugging

* Registers

¢ The program status word (PSW)
* The console log

* A trace

* The symptom record.

You may need to use one or more of the above sources, or others, to find exactly
where a problem occurred. For an explanation of individual abend codes, see the
appropriate component of the messages and codes documents.

Dump

A dump is a record of the contents of your machine's storage at a given moment.

For more information on dumps and how to use them, see |Chapter 4, “Creating a|
IDump,” on page 47| and |Chapter 5, “Debugging CP,” on page 51|

Nucleus Load Map
A nucleus load map (NUCMAP or load map) is a file that contains the following
information:

A list of the storage addresses of all control sections (CSECTs). A control section
is the part of a program that the programmer defines as a relocatable unit. It is a
block of code that can function properly in any part of storage. All elements of a
CSECT are loaded into adjoining locations in storage.

* The storage addresses of all modules loaded into the CP nucleus, CMS nucleus,
or GCS nucleus. The CP nucleus contains that portion of CP resident in host
storage. Similarly, the CMS or GCS nucleus is that portion of CMS or GCS
present in virtual storage.

* A list of all modifications performed on the modules in the nuclei. This includes
all the maintenance that IBM has performed on the modules and all the
modifications your organization has made to them.

One load map exists for CP, another for CMS, and another for GCS. z/VM creates
a load map each time CP or CMS is built—that is, when your system is first
installed or after it is repaired or modified. ' In this manner the load maps are kept
up to date.

Load maps are useful particularly when you are dealing with an infinite loop.
Load maps also complement the information found in a dump. When you use one,
you should have the other handy.

Load maps can be found in the following locations:

¢ The CPNUC MATP file, on the MAINT virtual machine's disk at virtual address
194, contains the CP NUCMAP.

e The CMSNUC MATP file, on MAINT's disk at virtual address 193, contains the
CMS NUCMAP.

Registers

A register is an area of storage specially set aside in your processor. Your machine
is equipped with a prefix register, 16 general purpose registers, 16 control registers,
16 access registers, and 16 floating-point registers.

1. These activities are performed by the system programmer or system operator using the MAINT virtual machine. This is the
virtual machine you use to install, service, and maintain your z/VM system. The k/VM: Installation Guide and |z/VM: Service Guide|
explain these activities.

Chapter 1. Introduction to Debugging 5

Introduction to Debugging

General purpose registers contain information being manipulated by the user
program currently running. Floating-point registers hold numeric values associated
with some exponent. These are usually very small or very large numbers—for
example, 45.6 x 10'2. While general and floating-point registers contain data
directly related to the processing of a user application program, control registers
are used to calculate and keep track of certain values pertaining to the operation
and management of the z/VM system. Access registers can designate any address
space, including the current instruction space.

Your program uses a register to store a piece of data that it is currently using. A
register can contain a numeric or alphabetic value, an address, or an instruction
that the computer is currently using to do some small step in your overall task.

A register holds a piece of data only as long as it is needed. The traffic in and out
of any given register can be quite heavy. A great deal can be learned by examining
the contents of your system's registers if a problem occurs.

The contents of your system's registers are included in any dump. It is also
possible to examine the contents of your registers by issuing various commands
and during a trace.

Program Status Word

The PSW (program status word) indicates your system's general status. There are
six different types of system PSWs that provide diagnostic information. Each one
has an old and new value. The PSWs are as follows:

* Restart

* External (EXT)

* Supervisor call (SVC)
e Program (PGM)

* Machine-check (MCH)
* Input/output (1/0).

The PSW format is described in detail in the ESA/390 Principles of Operation or
z/Architecture Principles of Operation. The state of your system, whether it is waiting
or processing, whether it can receive I/O interrupts or not, and the address of the
next instruction to be executed are reflected in these parts of the PSW:

Bit 6 Indicates whether your system accepts (or is enabled for) input/output
(I/0) interrupts. If this bit is set to 0, your machine is not enabled for 1/0.
If this bit is set to 1, your machine accepts I/O interrupts.

Bit 12 Indicates the architecture mode. It is 1 when in ESA /390 mode and 0 when
in z/Architecture® mode.

Bit 14 Indicates whether your z/VM system is in a wait state. If this bit is set to
0, your system is not in the wait state, and processing can proceed
normally. If this bit is set to 1, your system is in a wait state.

If bit 14 is set to 1, the setting of bit 6 usually” indicates whether the wait
state is enabled (1) or disabled (0).

Bits 64-127 (for z/Architecture mode) or 33-63 (for ESA/390 mode)
Contain the address of the next instruction your machine is set to process.

2. Bit 6 can be set to 0 and bit 14 set to 1 without the CPU being in a disabled wait state. For example, this could occur if bit 7 is on
and the program is waiting for an external interrupt.

6 z/VM V6.3 Diagnosis Guide

Introduction to Debugging

Examining the current PSW periodically may help you identify a loop. If the PSW
instruction address always has the same value, or if the instruction address has a
series of repeating values, the program probably is looping.

You can see the contents of the PSW by using the CP DISPLAY command with the
PSWG option for z/Architecture (64-bit) mode or the PSW option for ESA /390
(31-bit) mode. You can also determine the PSW by looking at a dump.

Console Log

A console log is a record of everything that has appeared on a certain virtual
machine's console. This includes all commands, messages, return codes, and
results.

When problems arise in the system, you are generally interested in the console log
for the system operator's console. The log includes all:

* Messages and return codes that have been sent to the operator

¢ Commands and instructions entered at the operator's console

* Responses that the operator has made to requests for action by the system.

The console log can describe the sequence of events that lead to a malfunction,
error, or problem from the system's point of view.

It is not always just the system operator's console log that might help you. For
example, if you are having a problem with RSCS, the console log for the RSCS
virtual machine might help.

At the system operator's console, the recording of the console log is automatic and
takes place at all times. To get a console log at other consoles you must enter the
command:

cp spool console start

to begin the recording. The best place for this command for CMS users is in the
PROFILE EXEC for the virtual machine in question, or in the PROFILE GCS for
GCS users. That way, you know a console log is always being recorded. You can
also enter the command from the command line and have it in effect temporarily.

Issue
cp spool console close

to create a console log of the information recorded up to this point and put the file
in your virtual printer. Recording continues until you log off the system or
explicitly stop it with the CP SPOOL CONSOLE STOP command.

To close and purge the spool file of an existing log, issue:
cp spool console purge

Traces

A trace is a chronological record of every major event that has taken place within
your z/VM system or within a virtual machine running there. A major event
corresponds to a program or set of instructions that your system or virtual
machine has run, representing a major accomplishment in an overall task. The
trace shows how each event affected virtual storage, registers, the PSW, and other
aspects of your system.

Chapter 1. Introduction to Debugging 7

Introduction to Debugging

8

on page 99|for more information.

A trace is invaluable when trying to track down a problem, particularly in the case
of wait states, infinite loops, and unexpected output. Often, traces themselves
suggest solutions to the problem. In a trace, you see the overall effect of every
event that occurred before and after the problem arose.

When CP tracing is active in z/VM, system events are recorded as trace table
entries in real storage. The number of trace table pages available to a processor is
determined by the TRACE portion of the STORAGE statement in the system
configuration file. You can override the effect of the TRACE portion of the
STORAGE statement by using the CP SET TRACEFRAMES command. The trace
table is described in the section titled [“Trace Entries” on page 37]

An internal trace table is maintained for GCS. Consult [“Internal Tracing Facilities”|

z/VM and GCS provide several commands you can enter to generate a trace of
your own. Each has certain characteristics that appeal to certain needs, as
explained below.

TRACE

A CP command that monitors events in a virtual machine. The TRACE
command monitors such events as instruction processing, /O activity,
successful branching, or a change in a register or storage location. This
command records trace data in a trace entry that you can send to a virtual
console, a virtual printer, or both. For more information, see m
(Commands and Utilities Referencd. Also, review the section of this document
titled [“Commands That Monitor Events” on page 27

TRSAVE
A CP command that saves trace data. You can save CP trace table data in
system trace files or on tape. You can save trace data defined by the
TRSOURCE command in system trace files only. For more information, see
Chapter 3, “Using Traces to Debug,” on page 37|and |z/VM: CP Commands|
and Utilities Referencel

TRSOURCE
A CP command that defines a trace as an I/0O trace (I0), a data trace
(DATA), or a guest trace (GT). TRSOURCE also activates or deactivates a
trace, displays the status of a trace, and removes trace IDs from CP. For
more information, see [Chapter 3, “Using Traces to Debug,” on page 37 and
k/VM: CP Commands and Utilities Referenced,

ETRACE
A GCS command that initiates the recording of events. The ETRACE
command works with the TRSOURCE command. For more information,
see |[Chapter 10, “Debugging GCS,” on page 99 and [z/VM: Group Control|
Ezsteml

ITRACE
A GCS command that enables or disables the recording of events in the
GCS internal trace table. Rather than record events taking place in the
system as a whole, the GCS internal trace table records events within a
virtual machine or virtual machine group. For more information, see
‘Using the ITRACE Command and GTRACE Macro” on page 100 and
2/VM: Group Control System}

There are even more tracing tools for those interested in the Systems Network
Architecture (SNA). VTAM® and NCP provide SNA users with several types of

z/VM V6.3 Diagnosis Guide

Introduction to Debugging

traces. These traces can record events that take place at several points in a network
as data travels from a virtual machine, through VTAM and NCP, to an SNA device.
Among those items you can trace in an SNA environment are:

* Buffer contents

* Input/output events

¢ Line activity

« DFSMS/VM buffer use

 Transmission group activity

* Internal VSCS and VTAM events.

Detailed information is available in the VTAM Diagnosis Guide and the VTAM
Diagnosis Reference.

Symptom Records
A symptom record is a collection of data conveying basic information about the

z/VM software problem. Use the Dump Viewing Facility and the VM Dump Tool
to display this data. See [z/VM: Dump Viewing Facilityl and g/VM: VM Dump Tool.

Determining the Cause

After you identify the type of problem, you must determine its cause. There are
recommended procedures to follow. These procedures are helpful, but do not
identify the cause of the problem in every case. Be resourceful. Use whatever data
you have available. If you do not find the cause of the problem after following the
recommended debugging procedures, you may need to perform desk-checking.

The section [“How to Use z/VM Facilities to Debug” on page 12|describes
procedures to follow in determining the cause of various problems that can occur
in CP or in the virtual machine. See [“Commands That Monitor Events” on page 27|
for information on using the CP TRACE command to debug a problem program.

[Table 1 on page 3| summarizes the types of problems you may encounter in z/VM.

Data You Need Before Calling IBM for Assistance

If you need to call IBM software support for assistance, it is very important for you
to have the following information:

* A problem inquiry data sheet
* A list of all applied maintenance for the module(s) involved
¢ The operator's console log

* Verification that all known errors against the recommended service upgrade
(RSU) tape have been applied

* The load map for the failing system.

Problem Inquiry Data Sheet
The problem inquiry data sheet (see|Figure 1 on page 12) identifies information
that should be available to ensure that you get the correct solution from IBM. It
might be a good idea to make copies of the sheet, to have blank sheets available in
case you have to call IBM.

System Information: When completing the problem inquiry data sheet, you
should use the QUERY CPLEVEL command to help you determine these facts
about your system:

e The version, release and modification level
* The service level.

Chapter 1. Introduction to Debugging 9

Introduction to Debugging

10

For example, if you were on a z/VM system and you entered
query cplevel

you would get:

z/VM VERSION v RELEASE r.m, SERVICE LEVEL yynn (64-bit)
GENERATED AT mm/dd/yy hh:mm:ss timezone
IPL AT mm/dd/yy hh:mm:ss timezone

v identifies the software version level.

r.m
identifies the software release level and the release modification level.

SERVICE LEVEL yynn
identifies the software service level number. The number indicates the most
recent RSU service tape that has been applied. yy is the last 2 digits of the year
and nn is the sequential number of the RSU tape for that year. It cannot
indicate which individual updates have been incorporated into CP. The system
programmer can find out what individual updates have been incorporated by
using the VMSES/E tool. For more information, see [z/VM: Service Guide]

GENERATED AT mm/dd/yy hh:mm:ss timezone

GENERATED AT mm/dd/yyyy hh:mm:ss timezone

GENERATED AT yyyy-mm-dd hh:mm:ss timezone
indicates the date and time (translated to the current active time zone) that the
CP system software was written to DASD. One of the above responses is
generated depending on the date format specified on the user's default date
format.

IPL mm/dd/yy hh:mm:ss timezone

IPL mm/dd/yyyy hh:mm:ss timezone

IPL yyyy-mm-dd hh:mm:ss timezone
indicates the date and time the CP system software was last started. One of the
above responses is generated depending on the date format specified on the
user's default date format.

Record this information on the problem inquiry data sheet.

CPU Information: The QUERY CPUID command should be used to help you to
determine what to enter for the CPU serial on the problem inquiry data sheet.

If you entered
query cpuid

you get:
CPUID = FF12069A20848000

This is the 16-digit processor identification associated with the real machine. Ignore
the FF, which refers to a second level system. The 10 digits that follow the FF are
the CPU serial:

* The first six digits are the processor identification number
* The next four digits are the processor model number.

Ignore the last four digits of this 16-digit field.

Note: You can also obtain the system release level, service level, and CPU serial
number through the Dump Viewing Facility or VM Dump Tool if a dump was

z/VM V6.3 Diagnosis Guide

Introduction to Debugging

created for the problem. See the description of the SYMPTOM subcommand in
/VM: Dumyp Viewing Facilityl and [z/VM: VM Dump Tool|for more information.

Problem Inquiry Data Sheet Fields: The problem inquiry data sheet consists of
the following fields:

Customer
Enter the name of your business.

Date
Enter today's date.

Problem #
Enter the problem number that IBM assigns to you when you call.

Access Code
Enter the customer number that the IBM marketing representative gives to
you.

CPU Serial
Enter the 10-digit number from using the QUERY CPUID command, as
described above.

Severity
Enter 1, 2, 3, or 4. The severity codes mean:

1 You are unable to use the program, resulting in a critical impact on your
operations.

2 You are able to use the program, but you are severely restricted.

3 You are able to use the program with limited functions that are not critical
to overall operations.

4 You have found a way to circumvent the problem.

Operating System, Service Level, and Release Level
Enter the system information exactly as displayed in the first line of output
from the QUERY CPLEVEL command.

Failing Component
Enter the name of the component that you suspect is causing the problem (for
example, CP, CMS, TSAF). Include service level, release level, and other
information as appropriate.

Problem/Inquiry Description
Enter the reason for calling IBM software support.

Keywords
Indicate words that best describe the problem, using the provided checklist.

Documentation Available
Indicate the available documentation, using the provided checklist.

Problem Tracking
Enter a log of your activity on the problem, including dates, names, and
activity.

Resolution APAR #
Enter the APAR number assigned to the problem (if defect-related).

RSU Tape PTF #
Enter the RSU tape number on which the PTF for the resolution APAR resides.

Other
Enter any other information pertinent to this problem.

Chapter 1. Introduction to Debugging 11

Introduction to Debugging

Sheet 1 of
Customer: Date: Problem #:
Access Code: CPU Serial: Severity:
Output from QUERY CPLEVEL command:
Failing Copmponent:
Problem/Inquiry Description:
Keywords:
Abend: —_— Module: _______ Wait State Code:
Label: Label: Label:
Loc: —_— Loc: Loc:
Loop Addresses:
Incorrect Output (INCORROUT):
Message:
Performance:
Documentation Available:
Storage Dump — User's Routine —_— Console Log ——
Program Listing — System Log ——— RSU Level JR—
Storage Map Diagnostic Output Service Level
Test Data JR— TP CONFIG List(s) VMLOAD List ——
Problem Tracking:
Date Name Activity
Resolution RSU Tape
APAR# _____________ PTF# Other

Figure 1. Problem Inquiry Data Sheet. Use this sheet to collect pertinent data before calling IBM.

How to Use z/VM Facilities to Debug

After you have identified the problem and the area where it occurred, you can
gather the information needed to determine the cause of the problem. The type of
information you want to look at varies with the type of problem. The tools used to
gather the information vary depending upon the area in which the problem occurs.
For example, if the problem is a loop condition, you will want to examine the
PSW. For a CP loop, an authorized user's console must be used to display the PSW,
but for a virtual machine loop you can display the PSW by using the CP DISPLAY
command.

If a procedure tells you to dump storage using the CP DUMP command, you
should see [Chapter 4, “Creating a Dump,” on page 47/

12 z/VM Ve.3 Diagnosis Guide

Introduction to Debugging

Abends

The following types of abnormal terminations (abends) can occur in z/VM:
- CP

 CF service machine

* CMS

* SFS or CRR Server

* GCS

* TSAF

* AVS

e Virtual machine.

Whenever a program abnormally terminates, a message is issued. This message
provides information that can help you correct the problem. The following
descriptions provide guidelines for debugging each type of abend.

CP Abend

z/VM abnormally terminates when system integrity may be jeopardized. When
this happens, a dump is taken. Internal checks on control block fields often
determine whether CP issues an abend.

An abend dump includes two primary sources of diagnostic information:
* An abend code

¢ Symptom record information.

The abend code tells what module has issued the dump and what actions CP is
taking or has taken. The format of a CP abend code is:

mmmi#

where:

mmm identifies which module issued the abend. The complete module name is
prefaced by HCP (for example, HCPmmm).

HiH is the code number.

For example, abend FREOO1 means that CP module HCPFRE issued the abend and
001 is the code number.

When the system terminates abnormally, you receive an error message. For an
explanation of error messages and abend codes, see k/VM: CP Messages and Codes,
The explanation for the abend code gives you a start in performing diagnosis.

z/VM issues two types of abends—hard and soft.
Hard Abend

z/VM issues a hard abend when it cannot isolate the error to a single virtual

machine. CP dumps all CP and free storage to a dump device. You can set the
dump device either at initialization or with the CP SET DUMP command. See
k/VM: CP Commands and Utilities Referencd for a description of the SET DUMP

command.

Chapter 1. Introduction to Debugging 13

Introduction to Debugging

14

Soft Abend

z/VM issues a soft abend when CP can isolate the error to a virtual machine or
when system integrity is not jeopardized by the error. A soft abend dump results,
giving only selected CP pages.

Reasons for the CP Abend

CP will stop and take an abnormal end dump under three conditions:
1. Program check in CP

Examine the program old PSW and the program interrupt code fields in the
prefix page (or page 0) to determine the failing module.

2. Module issuing the HCPABEND macro

Examine the SVC old PSW and abend code fields in the prefix page
(PFXABEND) of the dump to determine the module that issued the abend (SVC
4 for a soft abend) and the reason it was issued.

3. Operator forcing a CP system restart on the processor console

Examine the restart old PSW field in the prefix page to find the location of the
instruction that was processing when the operator forced a CP system restart.
The operator forces a CP system restart when CP is in a disabled wait state or
loop. See your processor manual for the appropriate method to force a CP
system restart.

Use the dump to determine why CP terminated and then determine how to correct
the condition.

The DUMPLOAD utility lets you load the dump file from a spooled reader file.
The VMDUMPTL command can be used to display information from a CP dump.
See [z/VM: CP Commands and Utilities Reference|for more information on the
DUMPLOAD utility. See [z/VM: VM Dump Tool| for information on the VMDUMPTL
command and its subcommands and macros.

CF Service Machine Abend

For information on CF service machine abends, see [Chapter 6, “Debugging CH
[Service Machine Problems,” on page 63

CMS Abend
For information on CMS abends, see [Chapter 7, “Debugging CMS,” on page 65

SFS or CRR Server Abend

For information on SFS or CRR recovery server abends, see [Chapter 9, “Debugging]
the SES Server or CRR Recovery Server,” on page 91

GCS Abend

For information on GCS abends, see [Chapter 10, “Debugging GCS,” on page 99|

TSAF Abend
For information on TSAF abends, see [Chapter 11, “Debugging TSAF,” on page 175/

AVS Abend
For information on AVS abends, see [Chapter 12, “Debugging AVS,” on page 183/

z/VM V6.3 Diagnosis Guide

Introduction to Debugging

Virtual Machine Abend (Other than CMS)

The abnormal termination of an operating system (such as z/OS or VSE) running
under CP appears the same as termination of the operating system on a real
machine. See the documents for that operating system for debugging information.
However, all of the CP debugging facilities may be used to help you gather the
information you need.

The CP VMDUMP command dumps virtual storage to a specified virtual
machine's reader spool file. You can use the DUMPLOAD utility described in the
k/VM: CP Commands and Utilities Referencd to process the file created by the
VMDUMP command.

If you choose to run a stand-alone dump program to dump the storage in your
virtual machine, be sure to specify the NOCLEAR option (which is the default)
when you enter the CP IPL command. Although CP's IPL simulator program is
loaded into a 4 KB page of the virtual machine's virtual storage, CP restores the
page to its pre-IPL contents.

If the problem can be reproduced, it may be helpful to trace the processing using
the CP TRACE commands. Also, you can display and alter registers, control words
(such as the PSW), and data areas. The CP TRACE commands can be very helpful
in debugging because you can gather information at various stages in processing.
A dump is static and represents the system at only one particular time. Debugging
on a virtual machine can often be more flexible than debugging on a real machine.

z/VM may stop a virtual machine if an irrecoverable machine check occurs in that
virtual machine. Hardware errors usually cause this type of virtual machine
termination. Such errors place the virtual machine into console function mode
where it can be made to continue processing on the main processor if you enter
the CP BEGIN command. In some cases a check-stopped virtual machine may be
indicative of a more pervasive error. A damaged page in an NSS might affect many
logged on users. Each user trying to use the NSS could be check-stopped in turn.
In another example, a product, such as VTAM running in a check-stopped Service
Virtual Machine (SVM) could cause an outage for each and all of its users.

Unexpected Results

The type of errors classified as unexpected results can range from operating
systems improperly functioning under CP to printed output in the wrong format.

If an operating system runs properly on a real machine but does not run properly
with CP, a problem exists. Also, if a program runs correctly under control of a
particular operating system on a real machine but does not run correctly under the
same operating system with CP, a problem exists.

First, there are conditions (such as time-dependent programs) that CP does not
support. Be sure that one of these conditions is not causing the unexpected results
in CP. See|z/VM: CP Planning and Administration] for a list of the restrictions.

Next, be sure that the program and operating system running on the virtual
machine are the same as those that ran on the real machine. Check for the same:

* Job stream
* Copy of the operating system (and program)
 System libraries.

Chapter 1. Introduction to Debugging 15

Introduction to Debugging

If you still cannot find the problem, look for an I/O problem. Try to reproduce the
problem while tracing all virtual I/O instructions and interrupts with the CP
TRACE command. Compare the trace entries. A discrepancy may indicate that one
of the CP restrictions was violated, or that an error occurred in CP. Remember,
however, that some virtual machines may produce test subchannel (TSCH) or test
I/0O (TIO) loops while waiting for I/O to complete. This is often an usual
occurrence and does not necessarily signify an endless loop.

If unexpected results occur (such as TEXT records interspersed in printed output),
you may wish to examine the contents of the system or user files. Non-CMS users
may run any of the utilities included in the operating system they are using to
examine and rearrange files. See the utilities publication for the operating system
running in the virtual machine for information on how to use the utilities.

CMS users should use the DASD Dump/Restore (DDR) utility to print or move
the data stored on direct access devices. See p/VM: CP Commands and Utilities|

for more information on the DDR utility.

Loops

A loop occurs primarily when an instruction sets or branches on a condition
incorrectly. You can usually recognize the existence of a loop when productive
processing ceases and the program continually repeats the same series of PSW
instruction addresses. If I/O operations are involved and the loop is very large, it
may be extremely difficult to define, and may even include nested loops. The
problem in loop analysis is finding either the instruction that should open the loop
or the instruction that passes control to the set of looping instructions. To help you
find the problem in a loop, you may want to spool your console to record the
instructions or trace the instructions to the printer.

CP Disabled Loop

The processor operator should perform the following sequence when gathering
information to find the cause of a disabled loop:

1. Trace the instructions currently running in the processor.
2. Force a CP system restart to cause an abend dump to be taken.

3. Save the information collected for the system programmer or system support
personnel.

After the processor operator has collected the information, the system programmer
or system support personnel should examine it:

1. Use the instructions traced by the operator and the load map to determine the
modules that may be involved in the loop.

2. If the cause of the loop is not apparent, examine the CP internal trace table in
the dump to determine the modules that may be involved in the loop.

3. Other information in the dump can be used to determine the condition that
caused the loop, such as:

s PSW

* General purpose registers

* Control registers

* Access registers

* Prefix page(s) of each CPU.

16 z/VM V6.3 Diagnosis Guide

Introduction to Debugging

Virtual Machine Disabled Loop

When a disabled loop in a virtual machine exists, the virtual machine operator
cannot communicate with the virtual machine's operating system. This means that
signalling attention does not cause an interrupt.

The virtual machine operator should perform the following sequence when trying
to find the cause of a disabled loop:

1. Enter the CP console function mode.

2. Use the CP TRACE command to trace the entire loop.

3. USE the CP DISPLAY command to display general purpose and control
registers as appropriate depending on when and how they are used.

4. Use the CP DUMP or CP VMDUMP command to dump your virtual storage. If
VMDUMP was used, use the DUMPLOAD utility to put the dump onto a disk.
For a dump of a ESA /390 Architecture guest, you can use the Dump Viewing
Facility or the VM Dump Tool to analyze the dump. For a dump of
z/Architecture guest, you must use the VM Dump Tool. For details, see
[Dump Viewing Facilityl or |z/VM: VM Dump Tool,

5. Examine the source code, if available.

Use the information just gathered, along with listings, to try to find the entry into
the loop.

If the operating system in the virtual machine itself manages virtual storage, it is
usually better to use that operating system's dump program. CP does not retrieve
pages that exist only on the virtual machine's paging device.

Virtual Machine Enabled Loop

The virtual machine operator should perform the following sequence when trying
to find the cause of an enabled loop:

1. Use the CP TRACE command to trace the entire loop. Display the PSW and the
general purpose and control registers.

2. Use the CP DUMP or CP VMDUMP command to dump your virtual storage. If
VMDUMP was used, use the DUMPLOAD utility to put the dump onto a disk.
For a dump of a ESA /390 Architecture guest, you can use the Dump Viewing
Facility or the VM Dump Tool to analyze the dump. For a dump of
z/ Architecture guest, you must use the VM Dump Tool. For details, see
[Dump Viewing Facility or [z/VM: VM Dump Tool}

3. Consult the source code to search for the faulty instructions, examining
previously ran modules if necessary. Begin by scanning for instructions that set
the condition code or branch on it.

4. If the manner of loop entry is still undetermined, assume that a wild branch
has occurred and begin a search for its origin.

Wait States

No processing occurs in the virtual machine when it is in a wait state. When the
wait state is an enabled one, an I/O interrupt causes processing to resume.
Likewise, when CP is in a wait state, its processing ceases.

To help identify a wait state in your virtual machine, you can periodically enter the
command:

#cp indicate user

Chapter 1. Introduction to Debugging 17

Introduction to Debugging

18

to display the resources used by the program. Compare the following resources:
* 10, which is the total number of nonspooled 1/O requests issued

* READS, which is the total number of page reads that have occurred

* WRITES, which is the total number of pages written.

When these resources don't change, the wait state probably exists.

CP Disabled Wait

CP enters a disabled wait state when system operation ends because of an error or
when system shutdown is complete. When CP or one of its service programs
enters a disabled wait state, it loads a wait state code into the program status word
(PSW). This PSW appears on your console at the end of the wait state message you
receive. For a description of the disabled wait state code and suggested actions to
take, see the message that has the same number as the wait state code. For
example: if the wait state code was 1010, you would look up message HCP1010 in
k/VM: CP Messages and Codes|

A disabled wait state usually results from a hardware malfunction. Most disabled
wait states occur during the initial program load (IPL) process. Many can be
attributed to normally correctable hardware errors that may cause a wait state
because the operating system error recovery procedures are not yet accessible.
Other frequent disabled wait states during IPL involve the system resident device
(SYSRES), which may have been formatted improperly, defined with the wrong
device type, or may have experienced an I/O error.

Disabled wait code 1010 is often found when installing a z/VM system for the first

time. This code indicates that no console was available; typical reasons are:

¢ No definition for a console on the OPERATOR_CONSOLES statement in the
system configuration file or the console was defined incorrectly

* If running in virtual mode, the CP TERMINAL CONMODE 3270 command was
not entered or a CP DEFINE CONSOLE command was entered incorrectly.

Codes 961, 964, and 9025 are common and can occur after the system is shut
down.

A severe machine check during post-IPL processing can also cause a CP disabled
wait state.

CP Enabled Wait

If you determine that CP is in an enabled wait state, but that no I/O interrupts are
occurring, either there may be an error in CP or CP may be failing to get an
interrupt from a hardware device. Force a CP system restart at the operator's
console to cause an abend dump to be taken. Use the abend dump to determine
the cause of the enabled (and noninterrupted) wait state. After the dump is taken,
IPL the system.

Using the dump, examine the:
* Virtual machine definition blocks (VMDSCAN)
* Real device block (RDEVBK).

See [“Reading CP Abend Dumps” on page 52| for specific information on how to
analyze a CP dump.

z/VM V6.3 Diagnosis Guide

Introduction to Debugging

Virtual Machine Disabled Wait

CP does not allow the virtual machine to enter a disabled wait state or certain
interrupt loops. Instead, CP notifies the virtual machine operator of the condition
with one of the following messages:

HCPGIR450W CP entered; disabled wait PSW psw

HCPVIX452I CP entered; external interrupt Toop
HCPGIR453W CP entered; program interrupt loop

and enters the console function mode.

An explanatory message from the operating system running in your virtual
machine may precede the HCPGIR450W message. If you did not receive an
explanation, examine the PSW portion of the message. To interpret the wait state
code in the PSW, see the section on wait states of the corresponding manual for the
system you were running in your virtual machine. Take the specified corrective
action, then re-IPL the virtual system.

An Example of a Virtual Machine Disabled Wait
You were running CMS and received the message:

HCPGIR450W CP entered; disabled wait PSW 000A0000 00000070
This means that CMS received a virtual machine check. Re-IPL CMS and try again.

For message HCPVIX452l, determine why the external interrupt new PSW is
enabled for an interrupt condition that does not clear upon acceptance (that is, the
timer is not expected to contain a negative value).

To determine the reason for message HCPGIR453W, examine the program check
information in page zero of your virtual storage. If this error occurred immediately
after the IPL command, the problem may be that you are trying to run a

System/ 390® guest in an XC virtual machine, or the reverse. To correct this error,
enter:

1. The CP QUERY SET command to find out the current MACHINE setting.
2. The CP SET MACHINE command to select the proper virtual machine.

If the virtual machine was running disconnected when the loop occurred, the
system logs it off. If this happens, you may need to reproduce the interrupt loop
with the virtual machine running connected to a console. To continue, IPL the
virtual system again.

To examine the contents of storage locations, registers, and control words on a
terminal, use the CP DISPLAY command. Some of the data you can see includes:

* The program status words

¢ The general-purpose registers

* The control registers

* The storage contents of your virtual machine.

Then use the CP DUMP or CP VMDUMP command to dump your virtual storage.
If VMDUMP was used, use the DUMPLOAD utility to put the dump onto a disk.
For a dump of a ESA /390 Architecture guest, you can use the Dump Viewing
Facility or the VM Dump Tool to analyze the dump. For a dump of z/Architecture
guest, you must use the VM Dump Tool. For details, see |z/VM: Dump Viewing|
[Facility| or |z/VM: VM Dump Tooll

Chapter 1. Introduction to Debugging 19

Introduction to Debugging

If you cannot find the cause of the wait or loop from the information just gathered,
try to reproduce the problem, this time tracing the processing with the CP TRACE
command.

If CMS is running in the virtual machine, you may also use the CMS debugging
facilities to display information or trace the processing. See [“Using CMS to Debug’]
for more information.

Virtual Machine Enabled Wait

If the virtual machine is in an enabled wait state, try to find out why no I/O or
external interrupts have occurred to allow processing to resume.

CP treats one case of an enabled wait in a virtual machine the same as a disabled
wait. If the virtual machine does not have the “real timer” option, CP issues the
message:

HCPGIR450W CP entered; disabled wait PSW psw

Because the virtual timer is not decreased while the virtual machine is in a wait
state, it cannot cause the external interrupt. The “real timer” runs in both the
problem state and wait state and can cause an external interrupt that allows
processing to resume. The clock comparator can also cause an external interrupt.

Hang Conditions

20

A hang condition occurs when either CP cannot continue processing or a virtual
machine cannot be dispatched. As a result, z/VM halts processing.

When gathering data about hang conditions, keep in mind that a delay may occur
between the time the error-causing request is issued and the time the system
hangs. The module running when the hang occurs may not be the module
responsible for the hang. As a result, some tools may provide no useful diagnostic
data. For example, CP continuously creates trace entries in a trace table for each
active processor in your configuration. Later trace entries may be written over the
trace entry describing the event that caused the hang.

There are two types of hangs:
* System
e User

System Hangs

System hangs occur when z/VM cannot perform any tasks to completion.

The best way to handle a system hang is for the hung system's operator to restart
z/VM from the operator's console. At that point, CP issues an SVC002 abend
dump and attempts a restart.

Diagnosing the cause of a system hang can be difficult. The following actions are
starting points:

* Locate the active virtual machine descriptor block (VMDBK) to determine which
user was running at the time of the dump. By looking at the scheduling controls
(VMDSLIST and VMDSTATE) in that VMDBK, you can determine if this was the
active VMDBK and what the user was doing.

You can use the VMDUMPTL command of the VM Dump Tool for this. See
[z/VM: VM Dump Tooll for more information about the VMDUMPTL command.

z/VM V6.3 Diagnosis Guide

Introduction to Debugging

¢ Check the restart old PSW. It points to the last instruction before the restart.
* Examine any trace entries available.

User Hangs

A user hang occurs when a virtual machine is no longer dispatched by CP. You
need to determine if the hang was caused by z/VM or the operating system you
are running in the virtual machine. The first step is to look at the operating system
running in the virtual machine to determine if it is hung.

One way of determining that the virtual machine is hung is to attempt a #CP
command. (For more information on issuing CP commands with #CD, see
ICP Commands and Utilities Reference|) For instance, entering the command:

#cp indicate user

causes one of two things to appear on your screen if you are in line mode:
1. Information about your virtual machine, if it is not hung

2. Nothing, if your virtual machine is hung.

If your virtual machine appears to be hung and it is not, you can enter the
command:

#cp indicate queues

If the user is in the eligible list, then over-committing storage by entering the SET
SRM STORBUF command can move the user off the eligible list and onto the
dispatch list. See lz/VM: Performancd specifically the section on tuning the storage
subsystem for more information. As with a system hang, the best source of
information is the VMDBK. From an authorized user, locate the hung user's
VMDBK. Check the scheduling and dispatching controls (VMDSLIST and
VMDSTATE) in the hung user's VMDBK to determine what state the user was in
when the hang condition occurred. If you cannot free the user based on the cause
of the hang condition, you may need to force the user off and log the user on
again. As a last resort, you may need to restart z/VM from the operator's console.
This will create an SVC002 abend dump that can be used to do more diagnosis.

Use of z/VM Debugging Commands

There are many commands that are useful for interactively debugging a problem.
The chapters that follow contain many examples of commands that can be used
with the different components of z/VM. However, the commands that you use are
not limited to the examples that are given. Any commands or locally produced
routines can be used for debugging a problem.

Chapter 1. Introduction to Debugging 21

22 z/VM V6.3 Diagnosis Guide

Chapter 2. Debugging Interactively

CP provides interactive commands that control the system and enable the user to
control his virtual machine and associated control program facilities. The virtual
machine operator using these commands can gather much the same information
about his virtual machine as the operator of a real machine gathers using facilities
on the processor console.

Several of these commands (for example, CP DISPLAY or CP STORE) examine or
alter virtual storage locations. When CP is in complete control of virtual storage
(for example, as in the case of CMS and GCS) these commands run as expected.
However, when the operating system in the virtual machine itself manipulates

virtual storage (for example, as in the case of MVS" or VSE), you should be very
cautious if you use these CP commands.

This chapter presents an overview of the z/VM commands used for debugging.
Instructions for using the commands discussed are in the following documents:

* |z/VM: CP Commands and Utilities Reference|
* |z/VM: Dump Viewing Facility}

You can use the following categories of commands to help diagnose problems
interactively:

¢ Commands that display and dump machine data

* Commands that set and query system features, conditions, and events
* Commands that monitor events

¢ Commands that alter the contents of storage

* Commands to collect and alter system information.

Commands That Display and Dump Machine Data

The CP DISPLAY command allows a user to display data from several real and
virtual machine components at a terminal. The CP DUMP command allows a user
to print data from several real and virtual machine components at a printer. The
data that can be displayed or printed is controlled by the privilege class of the
user. See [z/VM: CP Commands and Utilities Reference|for more information on these
commands.

Use the CP DISPLAY command to display the following kinds of control
information at your terminal or the CP DUMP command to print the following
kinds of control information on a printer.

* The contents of first-, second-, and third-level storage

¢ The contents of storage in address spaces of XC virtual machines
* Storage keys

* Prefix register

* General purpose registers (GPRs)

* Floating-point registers

* Control registers

e Access registers

* PSW

© Copyright IBM Corp. 1991, 2013 23

Debugging Interactively

24

e The subchannel information blocks (SCHIBs)
* Linkage stacks
* Virtual machine host access list.

Terminal Output

You can use the DISPLAY command to examine the general purpose registers,
floating-point registers, control registers, and access registers. For example, the
commands:

display gg

display g

display g1

display g2-5

display y

display x7

display ar

result in displays of all the GPRs (display gg or display g), GPR1, a range of GPRs
2 through 5, all the floating-point registers, control register 7, and all access
registers, respectively.

The DISPLAY command also displays the PSW and SCHIB:

display pswg
display psw
display schib

Class G users can display virtual machine storage information. Class C or E users
can display first level-storage information by using the DISPLAY H command. The
examples that follow are examples of virtual machine storage. First-level storage
output is similar except that the displayed line begins with H instead or R. The
storage information is displayed at your terminal in either of the following
formats:
* Four-byte groups, aligned on fullword boundaries, hexadecimal format, with
four fullwords per line. For example, if you enter the DISPLAY command as:

display 1026-102c

you receive the response:
ROOOO1024 XXXXXXXX XXXXXXXX XXXXXXXX F6

* 16-byte groups, aligned on 16-byte boundaries, hexadecimal format, with four
fullwords and EBCDIC translation per line. For example, if you enter the
DISPLAY command as:

display t1026-102c

The response is:

(EBCDIC trans.)
ROOOO1O20 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX F6 *.........c...u.. *

You can also specify the area of storage to be displayed by entering a hexadecimal
byte count such as:

display 1024.12

The response displays 20 bytes as follows:

ROOOO1024 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX F6
ROO0O1034 XXXXXXXX

z/VM V6.3 Diagnosis Guide

Debugging Interactively

In addition, the storage key is displayed on the first line, as well as at every page
boundary.

The previous responses illustrate the byte alignment that takes place in each of the
two display formats.

If the first location to be displayed is not on the appropriate 4- or 16-byte
boundary, it is rounded down to the next lower boundary that applies.

If the last location to be displayed does not fall at the end of the appropriate 4- or
16-byte group, it is rounded up to the end of that group.

If you enter:
display k1024-3800

the storage keys that are assigned to each 4K segment of the specified storage area
are displayed. For example, the response might be:

ROO001000 TO 0O37FF KEY=F6
ROO0O3800 TO 003800 KEY=EO

Contiguous 4K segments with identical storage keys are combined.

To display all storage keys, enter:
display k0-end

You can display any of the control registers. For example, enter:
display x1 4 a

and receive the response:

ECR 1 = XXXXXXXX
ECR 4 = XXXXXXXX
ECR 10 = XXXXXXXX

Printer Output

With the DUMP command you can dump the contents of all available registers, the
PSW, the virtual machine's host access list, and the storage keys, along with any
specified area of virtual storage, to the virtual machine's printer.

To print only the registers, the PSW, and the storage keys, you need only enter:
dump 0

To also print an area of virtual storage, you can specify the beginning and ending
hexadecimal locations:

dump 1064-10ff

You can also specify in hexadecimal the beginning location and the number of
bytes to be dumped:

dump 1064.9b
If you are printing a series of dumps, you can identify each one by including its

identification on the DUMP command line, following an asterisk:
dump 1000-2000 * dump no. 1

Chapter 2. Debugging Interactively 25

Debugging Interactively

When you direct dump output to a printer, the dump output is mixed in with any
printed program output. If you want dump output separated from other printed
output, use the CP DEFINE command to define a second printer. Dump output is
always sent to the virtual printer having the lowest address, so you must define
the dump printer at a address below the one used for program output. If the
printer is defined in the z/VM director as address 00E and you enter:

define printer 006

The dump output will go to the printer at address 006 and any other printed
output will go to the printer at address 00E.

To print the dump data on the real printer you must first close the virtual printer.
Enter:

close 006
This closes the dump data spool file and releases it for processing on a real printer.

You can use the CP VMDUMP command to dump the storage of your virtual
machine. Then use the DUMPLOAD utility to put the dump onto a disk. For a
dump of a ESA /390 Architecture guest, you can use the Dump Viewing Facility or
the VM Dump Tool to analyze the dump. For a dump of z/Architecture guest, you
must use the VM Dump Tool. For details, see lz/VM: Dump Viewing Facility| or
z/VM: VM Dump Tool,

When you enter at the terminal:
vmdump 150-200

or
vmdump 400:500

CP dumps the contents of virtual machine storage at the hexadecimal addresses
between X'150" and X'200" or between X'400' and X'500', respectively.

If you enter:
vmdump 150.50

CP dumps the contents of virtual storage starting at X'150" for a total of X'50" bytes.

If you enter:
vmdump 150.al1

CP dumps the contents of virtual storage from location X'150' to the end of the
virtual machine address space, including guest storage and all the DCSSs above
guest storage.

Commands That Set and Query System Features, Conditions, and

Events

The SYSTEM and SET commands set system-controlled functions and events; the
QUERY command lets you determine the status of those settings.

The SYSTEM command is a privilege class G command that simulates the RESET
and RESTART functions on a real computer console. You can also use it to clear

26 z/VM V6.3 Diagnosis Guide

Debugging Interactively

storage and store status in a virtual machine. The SYSTEM command is described
in the |p/VM: CP Commands and Utilities Reference|

Some operands of the SET command useful for debugging are MSG, SMSG, WNG,
EMSG, and IMSG. The messages resulting from these settings may be useful to
you while you are debugging.

The SET MSG function determines whether you receive messages sent by other
users by way of the MSG command.

The SET SMSG command turns on or off a virtual machine's special message flag.
If the virtual machine has issued DIAGNOSE code X'68' (AUTHORIZE), this flag
determines whether the virtual machine accepts or rejects messages sent by way of
the SMSG command — when the flag is on, messages are accepted.

The SET WNG function determines whether you receive warning messages.

The SET EMSG command controls error message handling. Messages can be
displayed in several ways depending upon how this command is entered. If SET
EMSG ON is specified, both the message identifier and text are displayed. If SET
EMSG TEXT is specified, only the message text is displayed. If SET EMSG CODE
is specified, only the identifier is displayed. If SET EMSG IUCV is specified, both
the error code and text are passed to the virtual machine through IUVC if a
connection to the message system service exists. If no IUCV connection exists, the
message is handled as if SET EMSG ON had been entered. You can also specify
SET EMSG OFF so that no error messages are displayed. When you log on, EMSG
is set to ON. Because it displays the complete message, this setting is useful when
you are debugging. The information contained in the message identifier is
especially helpful. It contains the name of the component and module that issued
the message as well as a message number which makes it easier to locate in
[CP Messages and Codes,

The SET IMSG command controls whether certain informational responses issued
by some CP commands are displayed at the terminal. Also, the SET IMSG
command determines whether you receive messages from CP when other users
spool reader, printer, or punch files to your virtual machine.

When you are debugging, it may be useful to have all messages displayed at your
terminal.

The SET RUN command controls whether the virtual machine stops when the
attention key is pressed.

The QUERY command displays the status of features and conditions set by the SET
command for your virtual machine. When you log on, the MSG, EMSG, IMSG, and
WNG operands of the SET command are set ON, and the SMSG and RUN
operands are set OFF. To verify these settings, use the QUERY SET command.

Commands That Monitor Events

The TRACE command monitors events that occur in your virtual machine. Some of
the events that you can trace include:

¢ Instruction processing
* Storage alteration
* Register alteration

Chapter 2. Debugging Interactively 27

Debugging Interactively

e 1/0O activity.

The TRACE command has many options. The primary operands allow you to
selectively choose the events to monitor. Each of the primary operands used with
the TRACE command establishes trace traps. A trace trap is a programming
function that captures information about an event in your virtual machine. For
example, to trace all events, enter:

trace all

To trace supervisor calls, program interrupts, and changes to the access registers,
enter:

trace svc
trace prog
trace ar

Continuing with this example, if, after specifying multiple activities to be traced,
you decide to stop tracing one or more of them, enter:

trace delete trapl
trace delete trap2

where trapl and trap2 are the identifiers for the program interrupt and access
register trace traps. Tracing is now confined to SVCs only.

You can also specify multiple trace events on a single command by using the
TRACE GOTO command to specify the name of a trace set that contains a list of
trace commands to be run. To define the named trace set, enter:

trace goto name
trace svc
trace prog
trace ar

To activate the named trace set, enter:
trace call name

To end the named trace set, enter:
trace end

or
trace return

Controlling the Trace Information

There are several common options for controlling the amount of information you
receive when you are using the TRACE command and how the information is
received.

For example, whenever you are recording trace output to display at your terminal,
the virtual machine stops running and enters the CP console read environment
after each output line. If you do not want program processing to halt every time a
trace output message is issued to the terminal, you can use the RUN option:

trace svc run
In the above example, the RUN option is used with a SVC trace. Entered in this

way, the command lets you watch supervisor call activity in your program without
halting processing every time a call occurs.

28 z/VM V6.3 Diagnosis Guide

Debugging Interactively

If you do not require your trace output immediately, you can direct it to the
printer, so that your terminal does not receive any information at all. Also, tracing
to the terminal takes you out of fullscreen mode. You may want to direct your
trace output to the printer to preserve the fullscreen environment if you are tracing
a fullscreen application (for example, XEDIT):

trace inst printer

When you direct trace output to a printer, the trace output is mixed in with any
printed program output. If you want trace output separated from other printed
output, use the CP DEFINE command to define a second printer. Trace output is
always sent to the virtual printer having the lowest address, so you must define
the trace printer at a address below the one used for program output. If the printer
is defined in the z/VM director as address OOE and you enter:

define printer 006

The trace output will go to the printer at address 006 and any other printed output
will go to the printer at address 00E.

When you finish tracing, use the CP CLOSE command to close the second virtual
printer file:

close 006

If you want trace output at the printer and at the terminal, you can use the BOTH
option:
trace all both

Trace output is always produced after the instruction is processed.

Restricting the Trace to an Address Range

The common options more clearly define the trace traps set by the primary
operand. The PSWA option lets you restrict instruction tracing to a particular
address range. Note that the address range remains in effect until you turn off the
trace element set up by the TRACE command.

For example, entering the command:
trace instruct pswa 20000

causes program processing to halt after the instruction at location X'20000' is
processed.

The following command:
trace instruct pswa 20000-20400

traces all the instructions within the range of X20000' and X20400" and produces
output for each instruction.

To see what events are currently being traced, enter:

query trace

For detailed examples of tracing programs in a virtual machine, see |z/VM: Virtual
Machine Operation}

Chapter 2. Debugging Interactively 29

Debugging Interactively

30

Selectivity

You can use many of the TRACE common options to increase selectivity. Using
TRACE, it is possible to limit tracing to a specific instruction or set of instructions.
For example, to monitor only LR instructions (operation code X'18'), enter:

trace instruct data 18

When the NORUN option is in effect, program processing halts after each
monitored event. When the RUN option is in effect, program processing continues
after each event. TRACE also counts occurrences between NORUN and RUN.
These options are STEP, STOP, PASS, and SKIP. For example, to halt program
processing after 5 instructions in the range X'20000' to X"204FF' have been run,
enter:

trace instruct pswa 20000.500 step 5
Program processing halts and enters the CP command environment.

Although the STEP option lets you step through your program more quickly
without giving up all control, every monitored instruction is displayed. If many
instructions are processed before the problem occurs, you may need to frequently
clear your screen. You can change the frequency with which events are displayed
by using the PASS option. Ordinarily, every successful event is displayed.
However, using the PASS option makes it possible to specify the number of
monitored events you want to skip before displaying one. For example, to skip the
display of 100 instructions and display the 101st, enter:

trace instruct pass 100

Tracing Successful Events

Another method of finding the failing instruction is to use the TRACE COUNT
command to count the successful trace events in your virtual machine, and the
TRACE TABLE command to display a list of successful branch instructions. If the
program is abending with any sort of program exception, load the failing program
and enter the CP command:

trace prog

Follow this with the command:
trace instruct range 20000.500

(assuming the program is loaded at location X'20000' and is X'500' bytes in length).
Then enter the command:

trace count

Next start the failing program. No trace output is produced while the COUNT
option is in effect. When the program interrupt occurs, enter the QUERY TRACE
command to display the current count:

query trace

You can trace the program after using the TRACE PASS option to get close to the
problem.

You can also use TRACE COUNT in conjunction with more specific trace elements
to produce the desired results. For example, if a problem occurs as a result of
processing an SVC 202 and the failing program issues many SVC 202s before
failing, trace only SVC 202s (operation code X'0ACA") and use TRACE COUNT to
count the occurrences. First, load the failing program and then enter:

z/VM V6.3 Diagnosis Guide

Debugging Interactively

trace svc aca
trace count

and start the program. When the error occurs, enter a QUERY TRACE to check the
count.

query trace

You can trace the program after using the TRACE PASS option to get close to the
problem.

For detailed examples, see /VM: Virtual Machine Operatior]

Tracing Storage Alteration

You can use the TRACE command to trace the alteration of storage in the user's
virtual machine. If you specify TRACE STORE, then whenever an instruction
places a value into storage, that event is traced. See the usage notes for the TRACE
STORE command in |z/VM: CP Commands and Utilities Reference for a list of
exceptions to the above statement. It is not necessary that this value be different
from the previous value.

It is also possible to monitor the alteration of storage to a specific value. For
example:

trace store into 20100 data 112757

monitors instructions that cause the storage at location X20100' to become
X'112757'. Note that these instructions are traced even if the value at location
X'20100" was already X'112757' before processing any instructions.

The TRACE CMD Option

You can use the CMD option of the TRACE command to run any CP command
(except SLEEP) whenever a particular event occurs. For example:

trace instruct pswa 20000.500 run
trace store 204f0-204ff pwsa 20000.500 run cmd display 204f0-204ff

traces the processing of every instruction in the range X20000' through X"204FF'
and displays the contents of storage at X'204F0' through X'204FF' every time any
storage within the range X'204F0' through X204FF' is altered by an instruction in
the range X'20000' through X'204FF'.

Also, you can use the CMD option to allow a program to continue at a specific
address whenever a particular event occurs. For example:

trace instruct pswa 20000.500 printer
trace branch into 0 run cmd begin 24128

causes program processing to continue at location X'24F28' whenever a branch to
location 0 occurs. Processing continues after the instruction is displayed. When
program processing resumes at location X'24F28' and a subsequent branch to zero
occurs, processing again begins at location X'24F28'. This can result in a loop. You
can use the CMD option to prevent this. For example, if LINEDIT is on, and the
escape character is set to ” and the line end character is #, enter:

trace instruct 20000.500 printer
trace branch into 0 run cmd trace clear branch"#begin 24f28

turns off the branch trace element and causes program processing to continue at
location X'24F28' after the instruction is displayed.

Chapter 2. Debugging Interactively 31

Debugging Interactively

The commands associated with each trace element are run whenever the event
described by the trace element occurs. The commands are run in the order in
which they appear in the set of events.

Note: If you enter a CP command while commands are being processed by
TRACE, the output from the commands may be interleaved.

After you have specified the CMD option for a particular trace element, the CMD
option remains in effect until the trace element is turned off or until you change it.
To change the option, see [z/VM: Virtual Machine Operation}

Stopping the TRACE

When you stop tracing, you must also enter the CLOSE command to release the
spooled trace output file for processing:

trace end
close vdev

For a more complete explanation, see [“Controlling the Trace Information” on page|

Commands That Alter the Contents of Storage

32

The following commands can be used to alter the contents of storage.

Altering Contents of Virtual Machine Storage (STORE Guest
Command)

Use the CP STORE (Guest Storage) command to alter the contents of specified
registers and locations in virtual machine storage. The contents of the following
can be altered:

¢ The contents of second-, and third-level storage

* The contents of storage in address spaces of XC virtual machines
* General purpose registers

* Floating-point registers

* Floating-point control registers

* Control registers

* Access registers

* PSW

Virtual storage can be altered in either fullword or byte units.

When using fullword units, the address of the first positions to be stored must
have either an L or no prefix. Each fullword operand can be from one to eight
hexadecimal digits in length. If less than eight digits are specified, they are
right-justified in the fullword unit and padded to the left with zeros. For example,
the command:

store 1024 46a2

or
store 11024 46a2

results in X'000046A2' being stored in locations X'1024' through X'1027'.

z/VM V6.3 Diagnosis Guide

Debugging Interactively

On the other hand, the command:
store 1024 46 a2

implies storing two fullwords and results in the storing of X'00000046000000A2" in
locations X'1024' throughX'102B'.

If the starting location is not a multiple of a fullword, it is automatically rounded
down to the next lower fullword boundary.

You can store in byte units by prefixing the start address with an S. The command:
store 1026 d1d6c5

stores X'D1D6C5' in locations X'1026" through X'1028'. Note that the data storage is
byte-aligned. If an odd number of hexadecimal digits is specified, CP does not
store the last digit, you receive an error message, and CP ends the function. For
example, if you specify:

store 51026 dldéc

CP stores d1 at X'1026' and d6 at X'1027'; when CP attempts to store c, it
recognizes an incomplete hexadecimal digit, and does not store the last digit.

You can store data into one or multiple consecutive registers.

General and control registers are loaded in fullword units that are right-justified
and padded to the left with zeros. For example, entering;:

store g4 123456

loads GPR 4 with X'00123456". The following command:
store g4 12 34 56

loads GPRs 4, 5, and 6 with X'00000012', X'00000034', and X'00000056', respectively.

Floating-point registers are loaded in doubleword units. Each doubleword operand
can be from 1 to 16 hexadecimal digits in length. If less than 16 digits are specified,
they are left-justified in the doubleword unit and padded to the right with zeros.
For example:

store y2 00123456789

loads floating-point register 2 with the value X'0012345678900000'.

Altering Contents of Host Storage (STORE Host Command)

Privilege class C users can use the CP STORE (Host Storage) command to alter the
contents of host storage (first-level storage). For example, the STORE (Host
Storage) command can be used to alter information in the old and new PSWs. See
/VM: CP Commands and Utilities Reference for details.

Simulating the Hardware Store Status Facility (STORE
STATUS)

You can use the STORE STATUS command to simulate the hardware store status
facility. Selected virtual machine data is stored in permanently assigned areas in
low storage. Enter:

store status

Chapter 2. Debugging Interactively 33

Debugging Interactively

The data stored by the STORE STATUS command is:
Table 2. Non-z/Architecture mode guest

Address
Length Content

Dec Hex

163 A3 1| Architectural-mode id (X'00")

212 D4 4 | Extended save area address. See note below.

216 D8 8 | CPU timer

224 EO 8| Clock comparator

256 100 8 | Current PSW

264 108 4 | Prefix register

288 120 64 | Access registers 0 through 15

352 160 32 | Floating-point registers 0, 2, 4, 6

384 180 64 | General registers 0 through 15

448 1C0 64 | Control registers 0 through 15

Note: The extended save area address is used only if it is provided and
floating-point extensions are enabled. When the extended save area is available, the
virtual machine's floating-point registers 0 through 15 and floating-point control
register are stored there.

Table 3. z/Architecture mode guest

Address
Length Content
Dec Hex

163 A3 1| Architectural-mode id (X'01")
4608 1200 128 | Floating-point registers 0 through 15
4736 1280 128 | General registers 0 through 15
4864 1300 16 | Current PSW
4888 1318 4 | Prefix register
4892 131C 4 | Floating-point control register
4900 1324 4| TOD programmable register
4904 1328 8| CPU timer
4913 1331 7| Clock comparator
4928 1340 64 | Access registers 0 through 15
4992 1380 128 | Control registers 0 through 15

Note: If the operating system that is running in your virtual machine operates in
the basic control mode, these areas of low storage may be used for other purposes.
You should not use this facility under these conditions.

For detailed information about these commands, see [z/VM: CP Commands and|
[Utilities Referencq,

When debugging, you may find it advantageous to alter storage, registers, or the
PSW and then restart the program. This is a good procedure for testing a proposed
change. Also, you can make a temporary correction and then continue to ensure
that the program runs trouble free.

A procedure for using the STORE STATUS command when debugging is as
follows:

34 2/VM V6.3 Diagnosis Guide

Debugging Interactively

* Enter the STORE STATUS command before entering a routine you wish to
debug.

¢ When processing stops (because an address stop was reached or because of an
error), display the status information that was stored with the STORE STATUS
command.

* Enter STORE STATUS again and display the status information that was stored
with the STORE STATUS command. You now have the status information before
and after the error. This information should help you solve the problem.

STORE STATUS can also be done when taking a stand-alone dump by issuing the
command on a CPU where you will IPL the stand-alone dump utility.

Commands to Collect and Analyze System Information

The following commands can be used to collect and analyze system information
when debugging:

* MONITOR

« INDICATE

* QUERY SRM

* LOCATE.

The CP MONITOR command provides a data collection tool that samples and
records a wide range of data. The CP INDICATE command provides a method to
observe the load conditions on the system while it is running. The CP QUERY
SRM command provides observation facilities for analyzing internal activity
counters and parameters.

See [z/VM: CP Commands and Utilities Referencd for more information on the
MONITOR, INDICATE, and QUERY SRM commands.

See [z/VM: Performance for more information on system tuning and performance.

Use the class C or E CP LOCATE command to find the address of CP control
blocks associated with a particular user, a user's virtual device, or a real system
device.

What to Do If Your Program Loops

If your program seems to be in a loop, you should first verify that it is looping,
and then interrupt its processing and do one of the following:

* Halt it entirely and return to the previous environment

* Restart the program at an address outside of the loop.

An indication of a program loop may be what seems to be an unreasonably long
processing time.

If you are in a long loop, you can use the CP TRACE command with the RUN
option and look at the addresses run to identify the loop.

In a smaller loop, you can verify a loop by checking the PSW frequently. If the last
word repeatedly contains the same series of addresses, it is a good indication that
your program is in a loop. To check the PSW of your virtual machine, you must be
in the CP command environment. You can then use DISPLAY PSW to examine the
PSW by entering:

Chapter 2. Debugging Interactively 35

Debugging Interactively

display psw

and then enter the command BEGIN to restart the program:
begin

If you are checking for a loop, you might enter both commands on the same line
using the logical line end. If the line end is set to a pound sign (#), enter:

display psw#begin

When you have determined that your program is in a loop, you can stop the
program by entering the CMS immediate command HX:

hx

If you want your program to continue at an address past the loop, you can use the
CP command BEGIN to specify the address at which you want to continue. For
example, enter:

begin 20cd0

You could also use the CP command STORE to change the instruction address in
the PSW before entering the BEGIN command. For example, enter:

store psw 0 20cd0#begin

Debugging with CP after a Program Check

36

If a program check occurs while your program is running, your virtual machine
may stop with a disabled wait state. To force your virtual machine to stop when a
program check occurs, use the TRACE command.

trace prog

All of your program's registers and storage areas remain exactly as they were
when program interruption occurred. The PSW that was in effect when your
program was interrupted is in the program old PSW. Enter one of the DISPLAY
commands to examine its contents:

display psw prog

display pswg prog

If, after using CP to examine your registers and storage areas, you can recover
from the problem, you must use the STORE command to restore the PSW,
specifying the address of the instruction just before the one indicated by the
program old PSW. For example, if your program was loaded at X'20000' and the
instruction address in your program is X'566' enter:

store psw 0 20566
begin

In this example, setting the first word of the PSW to 0 turns the wait bit off and
clears all other information in the first word, so that processing can resume.

z/VM V6.3 Diagnosis Guide

Chapter 3. Using Traces to Debug

When CP tracing is active, system events are recorded as trace entries in trace
tables in real storage. The initial number of trace table pages available to a
processor is determined by the TRACE portion of the STORAGE statement in the
system configuration file. The TRACE portion of the STORAGE statement lets you
specify the number of trace table pages for the master processor and a percentage
of that number of pages for all alternate processors. The effect of this initial
specification can be changed by using the SET TRACEFRAMES command; the
values currently in effect can be displayed by using the QUERY TRACEFRAMES
command. Trace entries are created for each processor in a configuration as long as
tracing is enabled.

Locating the CP Trace Table

CP keeps a detailed record in the CP trace table of every major event that takes
place in your real machine. This table is useful, particularly when trying to
discover the events that led to an error in CP.

To find the address where trace tables begin, check the value in PEXTTPNT in the
prefix page. For additional information on the prefix page, see ['HCPPEXPG: The]
[Prefix Page” on page 54/

Control register 12 contains the address at which the next trace entry will be
placed. That address, minus X20' or X'40' (depending on the entry length (see
entry formats)) is the address of the last trace entry created.

Note: Ignore bit 31 of control register 12. It is a flag indicating whether tracing is
currently active.

ﬂlustrates the concepts that each processor in a configuration has its own

allotment of trace table pages, that PEXTTPNT points to the beginning of the trace
table, and that control register 12 points to the next trace entry.

PFXTTPNT PFXTTPNT
Beginning of / Beginning of /

trace table page trace table page

Next trace|entry

Next trace|entry

CR12
CR12

Trace table pages Trace table pages
for CPU 1 for CPU 2

Figure 2. Trace Table Pages for Each Processor

Trace Entries

Trace table entries can be 32 or 64 bytes. An entry's length and format are defined
in its first two bytes:

© Copyright IBM Corp. 1991, 2013 37

Using Traces to Debug

38

¢ the low-order half of the first byte: 7x, where x is the number of register fields
minus one

* the high-order bit of its second byte: y0, where y is 1 for 64-byte format and 0
for 32-byte format.

Thus the first two bytes of trace entries are:

* 7400 - 32-byte entries in the format further described below

* 7580 - 64-byte entries (this format is shown in Appendix C)

In addition to these first two bytes, trace table entries contain:

* A time-of-day clock value that indicates when the entry was made

* A constant field (0000)

* A code that defines the event being traced

* A maximum of 40 bytes of information about the specific event traced.

shows the format of a 32-byte trace entry as it would appear in a dump.

Contents of general purpose registers

Real Trace
storage Time-of-day event
address clock code
\ \ \ | [|] | | |
007DC120 74003DC7 6AE40640 00003600 63000000 00C4E2E6 007D0000 00000000 8034CBAO
L L
Length and Constant
format indicator field

Figure 3. Format of a 32-byte Trace Entry

Each trace entry contains information on a specific system event. Consider the
sample trace entry shown in

1 2 3 4 5 6 7

\ | | | | |
00F83F80 74008776 67F53000 00002C00 0000000C 00C9CYC4 O0FC0298 00814488 8007BD3A

Figure 4. Sample Trace Entry in a CP Abend Dump

In this 32-byte trace entry at address X'00F83F80', the number over the blocks of
storage refer to the following items:

1. The time-of-day (TOD), bits 16 through 63, was set to X'877667F53000" when
this trace entry was created (at X'02' in the trace entry).

2. The trace event code was X'2C00', a RETURN WITH SAVE AREA (at X'0A' in
the trace entry).

3. The value returned in register 15 was X'0000000C' (at X'0C' in the trace entry).

4. The condition code was 0, and the returning module identifier was ‘IID" (at
X'10" in the trace entry).

5. The returned SAVBK address in register 13 was X'00FC0298' (at X'14' in the
trace entry).

6. The real address of the calling module from register 14 was X'00814488' (at
X'18" in the trace entry).

z/VM V6.3 Diagnosis Guide

Using Traces to Debug

7. The real exit address of the called module from register 14 was X'8007BD3A’ (at
X'1C" in the trace entry).

In this example, CP stored the contents of the general purpose registers at
X'FC0298' with a return code of 12.

For a complete listing of trace table codes and their field values, see
|”Trace Table Codes,” on page 209.|

Limiting the Trace Entries Recorded

Normally, CP tracing is active during system operation. However, new trace entries
are added continually to trace tables and eventually are written over older trace
entries. This process is called wrapping.

On stressed systems, wrapping may occur in well under one second. As a result,
an abend dump that includes the trace table for each processor may convey little
or no information about the problem. z/VM overcomes this limitation by allowing
class A and C users to do the following;:

* Limit tracing to certain user IDs or event codes

* Filter out data for certain user IDs or event codes
* Save entries on tape or in system trace files

* Refine captured information.

* Trace and display real I/O devices

* Trace and display most code paths in CP

* Extract captured trace data, including captured trace table data from trace
buffers within a CP dump.

For tracing activities, you mainly use eight CP commands:
* SET CPTRACE

* QUERY CPTRACE

* TRSOURCE

* QUERY TRSOURCE

* TRSAVE

* QUERY TRSAVE

* QUERY TAPES

* QUERY TRFILES.

See [z/VM: CP Commands and Utilities Referencd for the format of, and information
about, these commands.

For processing trace data recorded by the TRSOURCE command or for processing
CP trace data, you use one CP utility:

* TRACERED.

See |/VM: CP Commands and Utilities Referencd for detailed information about using
the TRACERED utility.

Designating Entries to Be Captured or Filtered

Although trace tables can be saved on tape or in system trace files by the CP
TRSAVE command, the rate at which trace entries are generated may exceed 1/O
capabilities. In such situations, you can filter out certain entries. The goal is to
capture only the trace information of interest.

Chapter 3. Using Traces to Debug 39

Using Traces to Debug

40

Use the CP SET CPTRACE command to disable as many trace codes as possible,
while still maintaining the necessary history of system events.

To designate which entries are either captured and written to a trace table or
filtered out and not written to a trace table, specify the following:

1. Trace codes
2. User ID or SYSTEM.

Note: SYSTEM represents the trace entries CP creates while doing work for the
system. This includes all work dispatched on the SYSTEM VMDBK for
serialization.

Capturing or Filtering Data by Trace Code: If you want to capture or filter data
for certain trace codes, use the CP SET CPTRACE command to trace individual
codes or named categories of codes.

Capturing or Filtering Data by User ID or SYSTEM: In addition to designating
trace codes for capturing or filtering, you can further limit the trace entries written
to trace tables by designating other tracing criteria. These additional tracing criteria
include user ID, SYSTEM, or certain groupings of these. Use the CP SET CPTRACE
command with the SPECIFIC option to designate certain user IDs be traced, each
with its own set of tracing criteria. Use the CP SET CPTRACE command with the
NONSPECIFIC option to designate certain user IDs be traced, all sharing the same
tracing criteria.

ﬂlustrates the concept that you can request tracing according to separate
tracing criteria for individual user IDs or shared tracing criteria for a group of user
IDs.

Separate tracing criteria
for users 1, 2, and 3

Specific Nonspecific Shared tracing criteria

~—_ | for all other users
|7 uUser1

User 5
User 6

User 4 } //V

User 2

| — User3

-

Figure 5. Tracing Events for Specific and Nonspecific Users

For additional information about the SET CPTRACE command, seem
(Commands and Utilities Reference)

More Information on Filtering

The following system events are some of the most common entries in a trace table.
If you do not need them for diagnosing problems in a particular circumstance,
filter them out to reduce the number of trace entries generated.

z/VM V6.3 Diagnosis Guide

Using Traces to Debug

System Event Entry Code

Obtain free storage frame CODE=0600
Return free storage frame CODE=0700
Run user CODE=0A00
Call with save area CODE=2800
Return with save area CODE=2C00
Stack CP execute block CODE=3300
Unstack CP execute block CODE=3310
Exit to the dispatcher CODE=3600

Tracing 1/0, Data Code Paths, and Virtual Machines

The TRSOURCE command lets you trace I/O paths, data code paths, guest LAN
or VSWITCH paths, and virtual machine guests. You can use TRSAVE to save the
source data on DASD and the TRACERED utility to format the data so that you
can read it interactively. The following are examples of using TRSOURCE for
tracking I/O, data paths, and virtual machine guests. For an example of using
TRSOURCE with a guest LAN or VSWITCH problem, see[“Using TRSOURCE tof
[TRACE a Guest LAN or Virtual Switch”| in [z/VM: Connectivity}

I/0 Trace Example

The operator gets a system message (COMMAND REJECT) indicating an I/O error
on the 3800 printer at real device address 411.

To look at the CCWs to this device, enter the following two commands:

trsource id printbug type io dev 411
trsource enable id printbug

Wait for the error to recur. At that time, enter this command:

trsource disable id printbug

You can now enter QUERY TRFILES to make sure that one or more trace files were
created. The user ID that issued the TRSOURCE commands is the owner of these
trace files. If you received message 6084 saying that the oldest trace file was
purged, more trace data was generated than could be contained in two 256-page
files. You may change the size or number of files that are created when you enable
the trace ID. If you choose to specify five 400-page files, enter:

trsave for id printbug size 400 keep 5

See TRSAVE command in |z/VM: CP Commands and Utilities Reference|for more
information.

Trace Table Example

The problem

Several users are reporting that their user IDs seem to be hung because they
cannot log off. This happens every day between 4:00 and 5:00 in the afternoon
when they want to go home. Their user IDs are USER1, USER2, USER3, and
USER4.

The research
You have taken a restart dump. In further analysis, you find that these user IDs
were hung because a wait flag is being turned on but never turned off for them.

Chapter 3. Using Traces to Debug 41

Using Traces to Debug

42

The restart dump does not reveal the cause because the trace table had wrapped
by the time the dump was taken. There are no events for these users in the dump.

The solution
Between 4:00 and 5:00 P.M. tomorrow, obtain the events that occur for these users.
You have two 3590 tape drives located at real device addresses 181 and 182.

At 4:00 PM., enter this command to turn tracing off for the system and for all
users.

set cptrace off

Now enter the following commands to turn tracing on for these four users :

set cptrace for userl on
set cptrace for user2 on
set cptrace for user3 on
set cptrace for userd on
trsave for cp on tape 181 182 rewind

At 5:00 PM., enter:
trsave off

To start the tracing for the system and for other users again, enter:
set cptrace on

You may now use the TRACERED utility to display the trace data on the tapes.

Data Trace Example 1

When using an application that uses IUCV to transmit data, end users are
complaining that they are receiving incorrect data. There are three possible points
at which the incorrect data may be originating:

1. The sending (SOURCE) virtual machine

2. The CP send/receive mechanism (IUCV)

3. The receiving (SINK) virtual machine.

Step A
Understand what data is supposed to be sent from the SOURCE virtual machine.

Step B
Find out what data is actually being sent. (If this data does not match what is
supposed to be sent, the SOURCE virtual machine is the origin of these problems.)

At offset X'1B2' in module HCPMOD, register 5 points to the user data; register 6
points to the control block describing the data. The instruction at this location is
LR R1,R5 (X'1815').

Set up a data trace to trace the general registers, the storage pointed to by register
5 for 200 bytes, and the storage pointed to by register 6 for 100 bytes. Enter the
following command:

trsource id send type data loc hcpmod + 1b2 1815 d1 g0:f g5.200 g6.100

Step C

Find out what data is being received by the receiving virtual machine. If the data
is the same as what was being sent, then IUCV is not the origin of the incorrect
data. Otherwise, IUCV is the problem source.

z/VM V6.3 Diagnosis Guide

Using Traces to Debug

At address X2B200', data is passed to the SINK virtual machine. The instruction at
this location is SLR R5,R5 (X'1F55'"). Register 4 points to the user data. Register 7
contains the pointer to the control block that describes the data. Set up a data trace
to trace the storage pointed to by register 4 for 200 bytes and the storage pointed
to by register 7 for 100 bytes. Enter:

trsource id sink type data loc 2b2000 1f55 d1 g4.200 g7.100

Step D

Collect the data. You are planning to analyze the data from a different user ID
(USERB) than the one issuing the TRSOURCE commands. Therefore, use TRSAVE
to change the user ID that will receive the files when the trace is completed. Enter
the following three commands:

trsave for id send to userb

trsave for id sink to userb
trsource enable id send sink

Wait for the problem to occur, then enter:
trsource disable id send sink

USERB may now use the TRACERED command to process the trace data recorded
by TRSOURCE.

Data Trace Example 2

The following example depicts how multiple TRSOURCE command invocations
may be entered to set up a conditional data link trace.

You have been experiencing system abends and based on preliminary dump
analysis you suspect an overlay is occurring. Information you've found so far in
the CP Trace Table at the time of the abend leads you to suspect that the error
takes place during execution of module HCPNOS.

Step A

Decide what information needs to be displayed to more closely pinpoint the error.

Step B

If appropriate, use the selectivity options of TRSOURCE when defining a
conditional data link trace. The example below defines a trace at X'34" into
HCPNOS at the X'58' LOAD instruction.

trsource id trcl type data loc hcpnos + 76 5840C048

Step C

Collect the data. Because you suspect that the error occurs while the dispatched
machine is either 'OPERATOR' or 'MAINT', the next two trace instructions check
the VMDBK for the ID of the machine. If it is OPERATOR, then registers 0 through
15 are displayed. If it is MAINT then 48 bytes of the program header information
that is pointed to by register 12 are displayed.

trsource id trcl if gb+200.8 EQ C'OPERATOR'

trsource id trcl then dl gO:f

trsource id trcl else if gB+200.8 eq C'MAINT'

trsource id trcl then d1 gc.30

trsource id trcl endif

trsource id trcl endif

trsource enable id trcl

Chapter 3. Using Traces to Debug 43

Using Traces to Debug

44

As with example 1 TRSAVE can be used to change the user ID that will receive the
files when the trace is completed. After the data is collected the trace can be
disabled.

Saving Trace Data on Tape or DASD

CP Trace table data may be saved in system trace files (TRFILEs) or on tape. Data
from traces defined by TRSOURCE may be saved only in system trace files.

If the system abends while trace activity is active, the trace information that has
not been recorded on DASD or tape at the time of the abend can be extracted from
the CP dump by the TRSAVE subcommand of the VM Dump Tool.

Factors That Affect Saving Trace Data

Number of Trace Table Pages: CP's ability to save trace table pages before they
wrap depends on the number of trace table pages available and the speed at which
the entries are generated.

The number of trace table pages available to each processor is determined by the:
* Real storage size of the system (that is, by default)

* STORAGE statement in the system configuration file

* SET TRACEFRAMES command.

For more information, see the STORAGE statement description in E/VM CI_J|

Planning and Administration|and the SET TRACEFRAMES description in [z/VM: CP

Commands and Utilities Referencel

Contention with Other Users or Functions: Trace tables are saved on tape at a
lower rate of speed if other users or functions are on the same control unit as the
tape drive you selected to save the trace tables.

Rate of Data Collection: If the rate of data collected exceeds the I/O rate for
saving trace data on tape or DASD then some trace data may not be saved.

The DEFERIO operand of the CP TRSAVE command can be used to delay the 1/0O
until after the trace has been turned off. With this option real storage frames are
taken from the dynamic paging area and set aside to hold an in-storage wrap of
the collected trace data. The oldest trace data is discarded when the wrap occurs
(all frames have been filled), so enough real storage frames need to be set aside to
hold the oldest trace data that you need. Filtering the amount of data collected can
decrease the amount of real storage frames needed.

Trace Wrapping: When determining the amount of data that needs to be saved
before wrapping, (the TRSAVE command's FRAMES parameter for in-storage
wrap, SIZE, or both and KEEP parameter of wrapping of trace files on DASD), you
need to consider the size of the trace records collected and the frequency of the
trace events.

Options Selected on the TRSAVE Command: If you are tracing a problem that
takes a long time to recreate, certain options on the TRSAVE command allow
continued recording of the trace tables or data from traces defined by the
TRSOURCE command, even as the tape is filled.

Selecting the use of two tape drives on the TRSAVE command is recommended to
minimize loss of data. If two tape drives are specified, CP automatically switches

z/VM V6.3 Diagnosis Guide

Using Traces to Debug

to the second tape drive when the tape on the first one becomes full. The operator
can then mount another tape on the first drive so that it too becomes available for
use should the tape on the second drive also become full. With this setup,
automatic switching back and forth between two tape drives continues until the
trace is complete.

In addition to specifying two tape drives, choosing either the RUN (rewind and
unload) or the REWIND option further defines how the process of saving trace
entries to tape proceeds. If you select RUN (the default), new tapes can be
mounted and the drive made ready to accept additional trace information to
provide an indefinite history. If you select REWIND, recording can continue after
the tape is rewound. If writing continues to the drive, the new information will be
written over existing information.

Viewing the Trace Tables

Use the TRACERED utility to format the trace entries saved onto tape or system
trace files, or written to CMS files by the VM Dump Tool TRSAVE subcommand,
and then view the information in a print file or CMS file. Use the TRACERED
utility to select options and format the output. You can send the output to a CMS
file for viewing on your virtual machine or for printing. See /VM: CP Commands|
tind Utilities Reference| for more information on the TRACERED utility.

Factors affecting TRACE Table Pages

CMS Storage: You may encounter disk storage constraints if you select a CMS file
for the output from the TRACERED utility. The more trace entries that meet the
selection criteria, the larger are the storage requirements. One way to alleviate
storage constraints is to designate more stringent selection criteria.

The table that follows shows the total number of trace entries TRACERED can
process onto a single cylinder or its equivalent in number of blocks on the
specified DASD type:

Table 4. Approximate Number of Trace Entries per Cylinder or per 1000 Blocks

CMS Minidisk Device Type Formatted Unformatted
3350 1666 5000
3375 1066 3200
3380 2083 6250
3390 2083 6250
FBA (1000/512-byte blocks) 1873 5620

You should also beware of creating CMS files too large for the CMS editor to
accommodate. Should this occur and you still want to view the entries created,
either use the COPYFILE command to break the file into manageable pieces or
increase the virtual machine storage size. The alternative is to erase the CMS file
and rerun the TRACERED utility with more stringent selection criteria.

Chapter 3. Using Traces to Debug 45

46 z/VM V6.3 Diagnosis Guide

Chapter 4. Creating a Dump

A dump is a record of the contents of your machine's storage at a given moment. It
can appear either online or printed on paper. A dump can pinpoint the moment
when malfunctions begin.

A dump can originate in a z/VM system within:
 CP

A virtual machine in which CMS, or another z/VM component, or a guest
operating system is running

¢ A communication controller.

A dump, depending upon the type you request and where it comes from, can
include data such as:

* Virtual storage, which is a byte-by-byte record of the contents of a virtual
machine's storage in hexadecimal notation. The dump provides an EBCDIC
translation of this data.

* Real storage, which is a byte-by-byte record of the contents of your z/VM
system's real storage and includes control blocks

* Access, general purpose, and floating-point registers
* Control registers

* The time-of-day clock

* The processor timer

¢ The program status words (PSWs).

Types of Dumps

There are several types of dumps you can request, depending on the information
that you want.

* A CP dump. This is a dump of the storage directly owned by CP. It is generated
by CP during a hard abend and results in system termination and possibly a
restart.

* A snapdump. This is a dump of the storage directly owned by CP and is very
similar to a hard abend dump but does not result in system termination.

* A CP soft abend dump. A soft abend dump is a dump of a small amount of the
storage directly owned by CP. It is created when CP encounters a problem
where system integrity is not jeopardized by the error, or when CP can isolate
an error to a virtual machine. It does not result in system termination.

* A stand-alone dump. Sometimes, a problem can be so severe that your system
cannot even produce a CP dump on its own. For this reason, every z/VM
system is equipped with a special program that will produce a dump of real
storage, regardless of how severe the problem is. It is called a stand-alone dump
because the program that produces it stands alone or independent of the rest of
the system programming. Because it is independent of the system programming,
any problems there will not prevent the dump from being created.

* A dump limited to any single virtual machine (VMDUMP) running in your
z/VM system. For example, you can request a dump of a virtual machine
containing CMS, RSCS, or any guest operating system that resides in a virtual
machine.

© Copyright IBM Corp. 1991, 2013 47

Creating a Dump

* A dump of a communication controller's storage. A communication controller is

a device that manages and controls the operation of a computer network,
including the routing of data therein. Such a device contains what is called a
communication controller program, a dump of which can be useful when
dealing with computer network problems. To dump information from a
communication controller, see the document associated with the type of
controller installed at your location. If you use the CP CCLOAD utility to
produce a communication controller dump, you can use the CP CCDUMP utility
to format the dump file. For more information, see k/VM: CP Commands and)

[Utilities Referencd

A dump is useful when dealing with a problem in your z/VM system. A dump is
a picture of the system's (or virtual machine's) storage. The problem is likely to be
somewhere in the picture. Dumps are also especially helpful in dealing with wait
states, infinite loops, and abends.

There may be times when a dump does not provide all the information you need.
In those cases, especially if the problem is a user hang, a trace table may be
helpful. See [Chapter 3, “Using Traces to Debug,” on page 37| for more information.

Setting Up the System for a Dump

You must route your dump to the appropriate destination and allow sufficient
space for the dump.

1.

Specify the appropriate dump medium and routing.

When CP creates a dump, the dump is sent to the virtual machine defined in
the SYSTEM_USERIDS statement in the system configuration file. You should
use the DUMPLOAD utility to load the dump from the reader spool file into a
CMS dump file.

If you wish, you can specify in advance the destinations for the dump. Use the
CP SET DUMP command to indicate where you prefer to send a dump
whenever one is generated. You can specify up to eight DASD devices, or one
tape. The [z/VM: CP Commands and Utilities Reference describes the SET DUMP
command in detail.

Provide sufficient spooling space to accommodate the dump.

A system dump uses a significant amount of spooling space. The amount of
space required depends on the amount of real storage on the processor in the
real machine and the type of DASD allocated for spooling. [z/VM: CP Planning|
[and Administration| contains a table of suggested dump space allowances for
various storage sizes and DASD types.

Provide sufficient minidisk space to receive the dump.

To use the available dump viewing tools, you must process the dump into a
CMS file. This requires the receiver to have sufficient minidisk space. The
precise amount of space needed depends upon:

¢ The amount of storage dumped
* The type of DASD
* The block size specified when the minidisk was formatted.

Guidelines for storage requirements are given in [z/VM: VM Dump Tool|

Decide which debugging tool you want to use.

If you produce a dump of the contents of a virtual machine, consider what that
machine contains. If it contains a guest operating system (such as MVS or VSE),
then consider using the dump facility provided by that particular system. The

48 2/VM V6.3 Diagnosis Guide

Creating a Dump

quality and quantity of the data in the dump will probably be higher than that
obtained using z/VM dump commands. Review the manuals pertaining to the
operating system in question.

If a virtual machine contains a z/VM product or component that runs in
ESA /390 Architecture mode (such as CMS or GCS), you can use the Dump
Viewing Facility to view the dump.

If the virtual machine contains CP or other z/Architecture mode operating
system, you can only use the VM Dump Tool to view the dumps in
z/ Architecture format.

Dumping Real or Virtual Machine Data

When CP abends, it automatically tries to create a dump. There may be other
times, however, when you need to produce a dump. This often depends on the
virtual machine running on the system.

For example, when a program you run under CMS abnormally ends, you do not
automatically receive a program dump. If, after attempting to use CMS and CP to
debug interactively, you still have not discovered the problem, you may want to
obtain a dump.

You might also want to obtain a dump if you find that you are displaying large
amounts of information, which is not practical on a terminal.

Commands That Dump Real or Virtual Machine Data

Commands that dump real or virtual machine data are: DUMP, VMDUMP, and
SNAPDUMP. See |z/VM: CP Commands and Utilities Referencd for more information
on these commands.

The DUMP Command

See the description of the DUMP command in |z/VM: CP Commands and Utilities
for a description of the real and virtual machine components that can be
sent to a virtual printer.

For example, to dump the virtual storage space for a specified address range with
an EBCDIC translation of the dump enter:

dump t20000-20810

See |Chapter 5, “Debugging CP,” on page 51| for more information on using dumps
to debug.

The SNAPDUMP Command

The SNAPDUMP command can be used to generate a full system dump identical
to a CP hard abend dump without terminating the system. This type of dump is
especially beneficial when debugging a "hung user" type of problem or when it is
impossible to shut the system down for dump generation and analysis. The
snapdump destination and dump content can be altered by the CP SET DUMP
command. The SET ABEND command can be used to redefine soft abends as
snapdumps. The CP DUMPLOAD utility can be used for processing dumps and
the VM Dump Tool can be used for viewing dumps.

The VMDUMP Command

The VMDUMP command dumps virtual storage to the virtual card reader of a
specified user ID. You should use the DUMPLOAD utility to load the dump from
the reader spool file into a CMS dump file and then use the Dump Viewing

Chapter 4. Creating a Dump 49

Creating a Dump

Facility or VM Dump Tool to view or print it. For details, see [z/VM: Dump Viewing|
[Facility| and [z/VM: VM Dump Tool} For a description of the format and contents of
the VMDUMP records, see ["VMDUMP Records: Format and Content” on page 62.]
See |Chapter 5, “Debugging CP,” on page 51| for more information on using dumps
to debug.

To create a dump of a program you are running under CMS, you can enter the
command:

vmdump 0-end format cms dcss

This example dumps all the discontiguous saved segments (DCSS) outside of the
virtual machine's storage.

To dump a portion of a discontiguous saved segment, use an inline range value
without specifying the DCSS option. Enter:

vmdump 100-25F0 format cms

CP dumps the contents of virtual storage from location X'100' to X'25F0', including
guest storage and all the discontiguous saved segments within the specified
address ranges.

Stand-alone Dump Utility

z/VM includes a stand-alone dump utility that you can tailor according to your
installation's configuration using CMS. After you generate z/VM, you should
create a stand-alone dump device for emergency use. If, after a system failure, CP
cannot create an abend dump, you can use the stand-alone dump utility to create a
dump. To use the stand-alone dump program to dump real storage, you must have
access to IPL the real machine.

See [z/VM: CP Planning and Administration|for information about the stand-alone
dump utility. It documents how the system administrator can install and configure
the stand-alone dump program. It also contains information about how the system
operator can take a stand-alone dump and load the dump for analysis.

50 z/VM V6.3 Diagnosis Guide

Chapter 5. Debugging CP

This chapter describes how to determine the problem and debugging CP.

Debugging CP in a Virtual Machine

Many CP problems can be isolated by running in a virtual machine. In most
instances, the virtual machine system is an exact replica of the system running on
the real machine. To set up a CP system in a virtual machine, use the same
procedure that generates a CP system on a real machine. However, remember that
the entire procedure of running service programs is now done on a virtual
machine. Also, the virtual machine must be described in the real directory. See
k/VM: Running Guest Operating Systems|for directions on how to set up the virtual
machine.

Abend Dumps

When an abnormal end occurs, CP attempts to dump the contents of storage.
Dumps can be directed to DASD or tape.

A soft abend dump is taken when a problem program cannot continue, when system
integrity is not jeopardized by the error, or when CP can isolate an error to a
virtual machine. If the operating system for your virtual machine cannot continue,
it ends and, in some cases, tries to take a dump. A virtual machine dump is sent to
a system data file.

A snapdump abend dump is taken when a problem program cannot continue, when
system integrity is not jeopardized by the error, or when CP can isolate an error to
a virtual machine. Although the information contained in the snapdump is
identical to that contained in a hard abend dump, the system is not terminated.

A hard abend dump is produced when the CP system cannot continue.

When you receive an abend, if the dump is set to go to DASD SPOOL space
(specified by the CP SET DUMP command), the dump is sent to the reader of the
user ID designated as the dump receiver. This user ID is specified by the DUMP
operand of the SYSTEM_USERIDS statement in the system configuration file. By
entering the QUERY DUMP command, you can determine where the dump is
being directed. After the dump is loaded onto DASD, use the DUMPLOAD utility
to create a CMS file and then use the VM Dump Tool to process it or view it
interactively.

If the dump is directed to one or more tapes, use the DUMPLOAD utility to create
a CMS file and then use the VM Dump Tool to view it interactively.

Use the CP SET DUMP command to designate the output device to receive system
abend dumps. See [z/VM: CP Commands and Utilities Referencd for the format of the
SET DUMP command.

© Copyright IBM Corp. 1991, 2013 51

Debugging CP

Reading CP Abend Dumps

When CP can no longer continue and abnormally ends, you must first determine
the condition that caused the abend, and then find the cause of that condition. You
should know the structure and function of CP.

Two types of dump formats occur when CP abnormally ends, depending upon
where the dump is directed to in the CP SET DUMP command.

If the dump is directed to DASD, and if you want to use the VM Dump Tool to
analyze it, you will need to use the DUMPLOAD utility to load the dump into a
CMS file. You can then use the VM Dump Tool VMDUMPTL command to view
the dump interactively. This chapter contains several references to the
VMDUMPTL command. For detailed information about this command, see

Storage is displayed in hexadecimal notation, four words to the line, with EBCDIC
translation at the right. The hexadecimal address of the first byte printed on each
line is indicated at the left.

For information about obtaining detailed descriptions of CP data areas and control
blocks, see [“Looking at Key Control Blocks” on page 53.|

Using the Assert Facility

The Assert Facility can help detect some problems earlier in execution. This facility
allows some CP modules to verify that certain conditions exist before continuing
execution. If the conditions are not met, an abend or stop occurs, depending on
how the facility is activated.

To turn the Assert Facility on, enter:

CP SET CPCHECKing ON ABEND
or
CP SET CPCHECKing ON VMSTOP

For more information about setting conditions, see [z/VM: CP Commands and|
[Utilities Referencd

Reading the Dump with the VM Dump Tool

The VM Dump Tool gives you the ability to interactively view CP, stand-alone, soft
abend, and virtual machine dumps. It runs under CMS.

To use the VM Dump Tool for diagnosing CP problems, you need the following:
* A copy of the dump you want to examine.

e A copy of the DUMPLOAD utility which you use to load the dump into a CMS
file in order for the resulting dump to be usable by the VM Dump Tool.

When you receive an abend, if the dump is set to go to DASD SPOOL space
(specified by the CP SET DUMP command), the dump is sent to the reader of the
user ID designated as the dump receiver. This user ID is specified by the DUMP
operand of the SYSTEM_USERIDS statement in the system configuration file. For
information on the CP SET DUMP command, see |z/VM: CP Commands and Utilities|
Reference] For information on setting up the system abend dump environment, see
2/VM: System Operation}

To use the dump with the VM Dump Tool, you must:

52 z/VM V6.3 Diagnosis Guide

Debugging CP

1. Log onto the dump receiver's user ID.

2. Load the dump into a CMS file, using the DUMPLOAD utility. See
[Commands and Utilities Reference for additional information on the DUMPLOAD
utility.

The VM Dump Tool shortens the time you need to gather information about a CP
problem. Some of the tasks that the VM Dump Tool performs are:

* Displaying symptom record information. By using the SYMPTOM subcommand
of VMDUMPTL, you can easily check the symptom record issued with the
abend dump.

* Viewing the contents of all registers and all PSW values at the time of the dump.
The REGS subcommand of VMDUMPTL enables you to view the contents of
general purpose, control, access, and floating-point registers, and all the PSW
values at the time of the dump.

* Formatting trace entries. By using the TRACE subcommand of VMDUMPTL,
you can format the trace entry so that each field of a trace entry is displayed
with its description.

* Locating the addresses of certain modules or entry points in a CP dump, or
identifying which modules or entry points reside at a specific address in a CP
dump. Use the MAP subcommand of VMDUMPTL to do this.

* Finding real and virtual device information. The RDEVBK and VDEVBK
subcommands of VMDUMPTL enable you to locate RDEVs and VDEVs by
going through the radix tree. These subcommands display the data on your
screen.

* Finding information about any control block. Use the BLOCK and CHAIN
subcommands of VMDUMPTL to do this.

Printing Dump Information from the VM Dump Tool

After you have processed the dump so that the VM Dump Tool can use it, you can
display information from the dump.

After you have completed your VM Dump Tool session, use the FILE or SAVE
subcommands to save the DUMPLOG file to disk. You can use the CMS PRINT
command to print this DUMPLOG file. For more information on PRINT, seem
[CMS Commands and Utilities Referencd,

Looking at Key Control Blocks

z/VM CP uses control blocks to hold information about many aspects of the entire
system. System processing relies on this information so that if incorrect data is
placed in these control blocks, errors occur.

When errors occur, control blocks often provide the best information about the
causes. By examining the fields within the control blocks and the available source
listings, you can obtain valuable diagnostic information for problems with z/VM.

Descriptions of some major control blocks appear in the following sections. For
each control block, a brief explanation of its purpose is given, followed by pointers
or other methods for locating the control block, and then by specific fields that you
may find useful in gathering data. Although these control blocks are especially
helpful in diagnosing problems, they are not the only ones you should use.

You can obtain a detailed description of CP data areas and control blocks in several
ways:

Chapter 5. Debugging CP 53

Debugging CP

* Use the VM Dump Tool BLOCK subcommand.

The BLOCK subcommand of the VM Dump Tool can be used to format CP
control blocks for displaying. See |z/VM: VM Dump Tool| for information about the
BLOCK subcommand.

Use the z/VM on-line control block data base.

You may also see the following URL for a description of the control blocks: IBM:
z/VM Internet Library

HCPPFXPG: The Prefix Page

The prefix page is actually two 4K pages for each processor running in z/VM.
Each prefix page contains both hardware and software information for its
processor. At system generation, HCPLOD defines the IPL processor's prefix page
location. Or, if an alternate processor is either brought online during IPL processing
or varied online after the IPL is complete, the prefix page is acquired dynamically
and its location is defined by HCPMPS.

If you receive an abend dump, you can find the address of the prefix page by
using the CPUID, CREGS, or REGS subcommands of VMDUMPTL.

HCPPFXPG contains information you will find helpful in performing diagnosis. It
contains the following:

¢ PSW information.

The system PSWs for the processor include PGM, MCH, 1/0, RESTART, SVC,
and EXT.

Linkage save areas:
These include the following;:
PFXTMPSV

A copy of the registers and the work areas when one module calls
another.

PFXBALSV
The BALR linkage save area.

PFXWRKSV
The special work save area.

PEXFRESV
The HCPFRE save area.

PEXPTRSV
The page translation save area.

PEXLNKSV
The call return linkage save area.

PFXIOSID
The subchannel number of the last I/O device from which an interrupt
was received, the first halfword always contains 0001.

PFXINPRM
The address of the RDEV of the last I/O device from which an interrupt
was received.

PFXRNUSR
The address of the last run VMDBK.

PFEXNXTPF
If multiple processors are defined, a pointer to the next prefix area.

54 z/VM V6.3 Diagnosis Guide

Debugging CP

PEXTTPNT
A pointer to the beginning of the trace table associated with this prefix

page.
PFXSYSVM

The address of the system VMDBK that is the starting point of the
global cyclic list.

PFXSYS
The address of the system common area (SYSCM).

HCPSYSCM: The System Common Area

The system common area, SYSCM, contains pointers, variables, counters, and
constants for the entire system. It is created at system generation as part of
HCPSYS. SYSCM is located by the pointer PEXSYS from any prefix page.

Diagnosis information found in HCPSYSCM includes:

SYSPRFIX
The prefix area for the IPLed processor

SYSTOD
The first half of the time-of-day (TOD) clock at IPL time

SYSRDEV
The address of the first RDEV block in the radix tree

SYSTORS
Real machine storage size up to 2 GB

SYSGTORS
Real machine storage size including storage above 2 GB

HCPVMDBK: The Virtual Machine Descriptor Block

The HCPVMDBK, or VMDBK, is a control block that exists for each virtual
machine that is logged on. Each descriptor block contains information about its
virtual machine. It is created when a user does any of the following;:

* Logs onto z/VM
* Defines an additional virtual processor
* Enters a SIE (Start Interpretive-Execution) instruction.

Each user has one VMDBK per virtual processor and one additional VMDBK for
each virtual processor from which the SIE instruction was entered.

CP allocates space for the VMDBKSs of virtual machines from the dynamic paging
area. Because no preallocation for VMDBKSs or for any other control blocks occurs,
guests cannot recover from a system incident.

There is at least one VMDBK in the dynamic paging area for each logged-on
virtual machine. The VMDBKSs remain in a disconnected state in virtual storage.

Locating Descriptor Blocks from a Dump

You can locate VMDBKs in several ways. To display a list of all the VMDBKSs in a
dump or to display a summary of VMDBKSs for a specific user, use the
VMDSCAN, VMDBK, or VMDBKS subcommands of the VM Dump Tool
VMDUMPTL command. For a complete description of these subcommands, see
tz/VM: VM Dump Tool

Chapter 5. Debugging CP 55

Debugging CP

The following fields in other control blocks may be helpful to you when examining
the VMDBKs:

VDEVUSER of HCPVDEV
A pointer to a user's VMDBK from a virtual device accessed by that user.

RDEVUSER of HCPRDEV
A pointer to a user's VMDBK from the real device owned by that user.

PEXSYSVM of HCPPEXPG
A pointer to the system VMDBK from the prefix page.

You can also locate VMDBKSs by chains called the global and local cyclic lists. A
global cyclic list is a chain of all origin VMDBKs for users logged on. The
VMDCYCLE field in the system VMDBK control block points to the first VMDBK
in the list of logged-on users. Then the VMDCYCLE field of each user's VMDBK
points to the next VMDBK in the global cyclic list, and on down the chain until the
last VMDBK. The last VMDBK does not point back to the system VMDBK control
block, but to the first VMDBK in the list, the same one to which the system
VMDBK points.

To point to the primary VMDBK for a specific user in a dump, use the VMDBK
subcommand of VMDUMTPL. Enter:

vmdbk userid

A local cyclic list is a chain of all VMDBKSs with the anchor at a VMDBK in the
global cyclic list. The VMDLCYCL field points to the next VMDBK on a local cyclic
list. The last VMDBK on a local cyclic list points back to the origin VMDBK-the
VMDBK on the global cyclic list.

To display a list of all the VMDBKSs in a dump, use the VMDBK subcommand of
VMDUMPTL. Enter:

vmdbks

The following fields are generally useful in gathering diagnostic information about
a VMDBK:

VMDSTATE
The scheduler and dispatcher state of the user. It tells you whether this
user is ready to be dispatched or is idle.

VMDSLIST
A description of the scheduling list of this user. This byte tells you whether
this user is currently in the dispatch list, eligible list, dormant list, or not in
any of the lists.

VMDDLCTL
A description of the status of the user in the dispatch list. This byte gives
information about the time-slice of the user on the dispatch list and
whether the user should be dropped or reordered.

VMDIOACT
The number of I/O operations outstanding for this user at the time the
dump was produced.

VMDCFCTL
A byte describing the status of the console function for this user at the time
the dump was produced.

56 z/VM V6.3 Diagnosis Guide

Debugging CP

VMDCYCLE
A pointer to the next VMDBK of the global cyclic list of logged-on users.

VMDLCYCL
A pointer to the next user-defined or system-generated VMDBK for the
user on the local cyclic list.

VMDCHRDN
The anchor for the radix tree to VDEVs by device number.

VMDCHRSN
The anchor for the radix tree to VDEVs by subchannel number.

HCPRDEYV: The Real Device Control Block

HCPRDEYV, or RDEYV, is a control block that describes a device. CP uses these
blocks to manage real and logical devices. There is a real device block for each real
device in the system. An RDEV is also created to represent each logical device and
is deleted when the logical device is no longer needed.

There are several ways to display the RDEV for a real device when reading a
dump:
¢ Use the VMDUMPTL command of the VM Dump Tool.
— Use the BLOCK subcommand to format and display RDEV blocks within a
dump.

— Use the RDEVBK subcommand to display summary information about real
1/0 control blocks. This subcommand uses a radix tree, which is described in
[“Using a Radix Tree Structure to Locate RDEVs.”|

* Follow one of the radix tree procedures described in the following text.

Using a Radix Tree Structure to Locate RDEVs

RDEVs for real and logical devices are stored in a radix tree structure. You can use
information about the radix tree structure to locate RDEVs for both real and logical
devices. The procedures for locating RDEVs for real and logical devices are nearly

identical. In the examples that follow, assume you are trying to locate the
RDEV for real device 0191.

SYSRIOIX—)
HCPRIOIX |] |
Oxxx
01xx 0191
RDEV0191
019x

Figure 6. Using a Radix Tree to Locate an RDEV Block

Example 1: Use the VMDUMPTL command of the VM Dump Tool. When you are
using VMDUMPTL to view a dump, enter:

rdevbk 191

Chapter 5. Debugging CP 57

Debugging CP

The information you receive will point to the address of the RDEV of real device
0191.

Example 2: Use the device number in the process outlined here. The instructions
below tell how to locate an RDEV for a real device. The differences in the process
for locating the RDEV for a logical device are pointed out.

Note: On a running system, you can use the LOCATE RDEV command to find the
addresses of a real device block and its associated control blocks.

1. Look in HCPPEXPG, the prefix page, to find PFEXSYS. PEXSYS points to
HCPSYSCM, the system common area.

2. Find the address of the anchor, SYSRIOIX, for the radix tree. Assume you are
using a chaining procedure.

3. Look 0 fullwords past that anchor (HCPRIOIX) address because the first digit
of the device number is 0.

The address at 0 fullwords past the anchor is the next (second) address you
use.

4. Look 1 fullword past that second address because the second digit of the
device number is 1.

The address at 1 fullword past the second address is the next (third) address
you use.

5. Repeat this procedure for the remaining two digits, 9 and 1, for the device. The
last address points to the address for the RDEV of real device 0191.

To find the logical RDEV for a logical device, use the procedure outlined above,
with the following exceptions:

* Look for SYSDVFLX (rather than SYSDVFRX) in HCPSYSCM.
* SYSDVFLX points to HCPLSOLX.

* HCPLSOLX points directly to the first table on the radix tree (rather than to
another field that in turn points to the first table on the tree).

Note: On a running system, you can use the LOCATE LDEV command to find the
addresses of a system logical device block and its associated control blocks.

Control block fields of diagnostic value in the RDEV are as follows:

RDEVAIOR
A pointer to the active IORBK for this device.

RDEVAFLG
The control flag for the device allocated at the address of this RDEV. It
describes the use of the RDEV—for instance system use, CP volume, and
other usages.

RDEVDFLG
The device-dependent status flag.

RDEVRFLG
The device error recovery control flag.

RDEVSTAT
The device-operation control flag.

RDEVVDEV
The address of the VDEYV, if one is present, associated with this RDEV.
RDEVVDEYV contains a VDEV address only if the virtual device is
dedicated. When it does not contain a VDEV address, it contains zeros. If

58 z/VM V6.3 Diagnosis Guide

Debugging CP

two or more virtual devices are linked to this RDEV, the address of the
pointer to the VDEV addresses resides in RDEVMDSK.

RDEVMDSK
The address of the MDISK block chain. The chain may consist of one or
more MDISK blocks. Each block points to a chain of one or more VDEVs
linked to that minidisk for a virtual machine. When RDEVMDSK does not
contain the address of the MDISK block chain, it contains zeros.

RDEVUSER
The address of the owning VMDBK for this device.

HCPIORBK: The I/0 Request and Response Block

CP creates an IORBK whenever it needs to perform an I/O operation. When the
operation completes, the IORBK is deleted.

Some key areas of the IORBK are as follows:

IORSCHED
The scheduling and control flags for the IORBK.

IORFCTL
A description of the subchannel function of the IORBK.

IORQSTAT
A description of the status of the IORBK—waiting, active, or in dispatcher
control.

IORETCOD
The return code of the I/O operation after I/O is completed.

IORUSER
The address of the VMDBK using the IORBK.

IORCPA
The address of the channel program (CCWs).

IORIRA
The address of second level interrupt handler (SLIH) routine.

IORFPNT
The address of the next queued IORBK.

IORBPNT
The address of the previously queued IORBK.

IORRDEV
The address of the RDEV associated with this IORBK operation.

HCPVDEYV: The Virtual Device Block

A VDEV describes the status of a real or virtual I/O device that can be accessed by
a virtual machine. A VDEV defines the device to the virtual machine, whereas an
RDEV defines the device to the system.

A VDEV remains active while the virtual machine is either running or
disconnected. It is deleted only when the virtual machine is logged off or the
virtual device is detached. VDEVs are created and deleted by HCPVDB.

If z/VM is running, users with class C or E privileges can find the address of a
VDEV by using the CP LOCATE command. For example, to find the VDEV for
USERL1's 191 disk, you enter:

Chapter 5. Debugging CP 59

Debugging CP

Tocate userl 191

The VM Dump Tool also offers ways to locate a user's VDEV easily. For further
information on finding virtual device blocks, see the VDEVBK subcommand of
VMDUMPTL in [z/VM: VM Dump Tool|

To locate VDEVs from a dump, use the following pointers. Because the VMDBK
has a pointer to the radix tree, the information in [“Using a Radix Tree Structure to|
[Locate RDEVs” on page 57 may also be helpful.

RDEVVDEV
The address of the VDEYV, if one is present, associated with this RDEV.
RDEVVDEV contains a VDEV address only if the virtual device is
dedicated. When it does not contain a VDEV address, it contains zeros. If
two or more virtual devices are linked to this RDEV, the address of the
pointer to the VDEV addresses resides in RDEVMDSK.

RDEVMDSK
The address of the MDISK block chain. The chain may consist of one more
MDISK blocks. Each block points to a chain of one or more VDEVs linked
to that minidisk for a virtual machine. When RDEVMDSK does not contain
the address of the MDISK block chain, it contains zeros.

IORVDEV
A pointer from the IORBK to the VDEV for that I/O operation.

Diagnostic information found in the VDEV includes:

VDEVUSER
The address of the VMDBK that owns this VDEV.

VDEVRDEV
The address of the RDEV associated with this VDEV.

HCPCPEBK: The CP Execution Block

A CPEBK represents one unit of asynchronous work. The CPEBK format is
identical to either the SAVBK or the SVGBK.

HCPSAVBK and HCPSVGBK: The Save Area Block

A SAVBK is a save area, as is a SVGBK. Both blocks are used in CP, but their
structures and sizes are different. Most save areas are dynamic, although some are
static and reside in other blocks, such as the Prefix Page and the SSABK. The
formats of the save areas and the CPEBK are identical.

When a CPEBK, SAVBK, or SVGBK is used, it contains the following:
* A caller's registers 0 through 15

* The use status of the block

* Indicators of the size and format of the block.

* Work areas.

A save area may hold the general registers in one of three formats:
* Short (32-bit)

* Long (64-bit) contiguous

* Long (64-bit) discontiguous.

The short format is used for calls between modules that use only the low-order 32
bits of the general registers. The long contiguous format is used for calls between
modules that use the full 64 bits of the general registers. The long discontiguous

60 z/VM V6.3 Diagnosis Guide

Debugging CP

format is used for calls from modules that use the full 64 bits of the general
registers to those that use only the low-order 32 bits.

Because of these different register saving conventions, the layout of the save area is
different in these three cases. The short register and long discontiguous register
layouts are identical, except that the latter defines an additional area to hold the
high-order halves of the general registers. This area is reserved in the short register
layout. The SAVBK defines these formats of the save area. The SVGBK defines the
format of the long contiguous save area.

You can use the VMDUMPTL command of the VM Dump Tool to help you debug
save areas from a dump. The CPEBK subcommand formats the save areas. To
locate the save areas and format them, use the FINDCPE subcommand. For more
information on finding save areas, see [z/VM: VM Dump Tooll

The following fields are helpful when you are checking CPEBKs or SAVBKs:

CPEXFPNT/CPEXBPNT, SAVEFPNT/SAVEBPNT, SVGFPNT/SVGBPNT:
The forward and backward pointers for threaded lists.

CPEXSCHC, SAVESCHC, SVGSCHC:
The stacking control field specifies what type of function the block
performs.

CPEXCALC, SAVECALC, SVGCALC:
The dispatching control field specifies the status of the block.

CPEXFORM, SAVEFORM, SVGFORM:
The format field specifies the size and format of the block.

CPEXREGS, SAVEREGS/SAVEHIRG, SVGREGS:
A caller's general registers.

CPEXR1,1 SAVER11, SVGR11LO:
The VMDBK address of the user for whom the block is scheduled.

CPEXR13, SAVER13, SVGR13LO:
Generally, the previous (that is, the caller's) save area.

HCPFRMTE: The Frame Table Entry

FRMTE manages frames of real storage in z/VM. It keeps track of how each frame
is currently being used and what frames of storage are currently available.

The frame table is allocated dynamically at IPL time. The frame table is never
deleted during processing. The start of the frame table is located by PEXFTBL in
any prefix page. For further information on finding frame table entries, see the
FRAME subcommand of VMDUMPTL in [z/VM: VM Dump Tool|

Important HCPFRMTE fields include the following:

FRMFPNT
A forward pointer to the next frame table entry for a chained frame.

FRMBPNT
A backward pointer to the previous frame table entry for a chained frame.

FRMCSWRD
A fullword that has the following byte fields:

Chapter 5. Debugging CP 61

Debugging CP

FRMCSBO0
A description of how the frame is currently being used. For
example, CP is using the frame of storage for a trace table or user

page.
FRMCSB1
A description of the static state of the real storage frame.

FRMCSB2
A description of the dynamic state of the real storage frame.

FRMCSB3
A field used in serializing the frame state changes.

VMDUMP Records: Format and Content

When a user enters the VMDUMP command, CP dumps virtual storage of the
user's virtual machine. The dump goes to the reader of the user who entered the
command, unless otherwise specified. CP can store this dump in the reader spool
file of any virtual machine that the user specified as an operand on the VMDUMP
command.

Dumps produced by the VMDUMP command and Diagnose X'94' will have two
different formats based on the architecture mode of the guest virtual machine. A
vmdump of an ESA /390 mode guest, such as one running CMS, will be in

ESA /390 format and only contain storage up to 2 GB. This format is the same as
dumps that were produced in previous releases. DVF DUMPSCAN or VM Dump
Tool can be used to analyze dumps in this format. A vimdump of a z/Architecture
mode guest, such as one running z/VM CP or Linux on System z®, will be in

z/ Architecture format and will include storage over 2 GB if such storage exists.
Only VM Dump Tool can be used to analyze dumps in z/Architecture format.

The first logical dump record contains the symptom information. The second
logical dump record contains the Dump File Map. Some of the later records
contain the Dump File Information Record (DFIR), the Address Space Information
Record (ASIBK) and the dumped storage.

CP records the storage dump sequentially starting with the lowest address
dumped and ending with the highest address dumped. CP records each byte as an
untranslated 8-bit binary value.

The VMDUMP command dumps virtual storage that z/VM created for the virtual
machine user. VMDUMP creates a symptom record that provides the VM Dump
Tool with header information to identify the owner of the dump. After
DUMPLOAD creates the CMS file from the VMDUMP system data file, the DVF
DUMPSCAN or the VM Dump Tool may be used to debug errors, as well as to
store and maintain error information about the virtual machine.

62 z/VM V6.3 Diagnosis Guide

Chapter 6. Debugging CF Service Machine Problems

This chapter describes how to gather information pertinent to debugging a
Coupling Facility (CF) service machine.

A CF service machine is a special type of virtual machine that enables a sysplex
environment to be defined on a z/VM system. A CF service machine runs the
Coupling Facility Control Code CFCC (Licensed Internal Code). This code is not
part of the z/VM product and is loaded directly from the processor controller into
the CF service machine's virtual storage.

Determining the Status of the CF Service Machine

The user that is defined as the secondary user of the CF service machine can issue
a limited set of regular CFCC Commands to retrieve information about the
coupling environment. This is the user ID that is specified on the CONSOLE
statement of the CF service machine directory definition. The following CFCC
commands may be helpful to diagnose problems with the CF service machine:

* DISPLAY MODE

* DISPLAY CHPIDS

* DISPLAY RESOURCES
» DISPLAY LEVEL

If the CF service machine does not respond to these commands, the CF service
machine may be hung or may have abended. Follow the steps in the next section
to diagnose problems where the CF service machine is unresponsive.

Steps to Follow When CF Service Machine Abend Occurs

When the CF service machine detects a problem, it creates a dump and does not
automatically restart itself. When this occurs, you should gather information about
the current environment. This information will be useful for diagnosing the
problem.

* Save the spooled console log of the secondary user of the CF service machine.
This is the user ID that is specified on the CONSOLE statement of the CF
service machine directory definition. The CF service machine may have
displayed a message indicating the cause of the problem. If the console of the
secondary user was not spooled, write down any messages that were sent from
the CF service machine.

* Record information about the current system such as:
— What processor model is z/VM running on?
— Has the processor model changed recently?
— Has the processor Licensed Internal Code been changed recently?
— What was the system load at the time of the problem?
* Have the system operator take a CP SNAPDUMP of the system.

* Have the system operator issue the CP RESTART MSGPROC command to restart
the CF service machine.

© Copyright IBM Corp. 1991, 2013 63

Debugging CF Service Machine problems

After the CF service machine restarts, record the release and service level of the CF
service machine. This is displayed on the secondary console of the CF service
machine during its initialization. This can also be displayed with the CFCC
DISPLAY LEVEL command.

Finding the CF Service Machine Dump

When the CF service machine detects a problem, it creates a dump. The CF service
machine uses the CP VMDUMP command to dump specific ranges of storage of its
virtual machine. The dumps go to the reader of the CF service machine.

Processing a CF Service Machine Dump

Because the CF service machine is not set up to process dumps, you need to
transfer the dump file to another virtual machine to process it.

After the dump has been transferred to your virtual machine, load the dump onto
a minidisk using the DUMPLOAD utility.

To load the dump, enter:
dumpload

See [z/VM: CP Commands and Utilities Reference|for more information about the
DUMPLOAD utility.

Diagnosing Problems for CF Service Machines

Problems with the CF service machine should be reported to the IBM Support
Center. The support center personnel will analyze the CF service machine dump in
order to determine the problem. Inform the support center if you have a CP
SNAPDUMP of the system at the time of the problem.

64 z/VM V6.3 Diagnosis Guide

Chapter 7. Debugging CMS

This chapter describes how to use the Conversational Monitor System (CMS) to
help you debug CMS or a problem program. In addition, a CMS user can use the
Control Program (CP) commands and facilities to debug. Information that is often
useful in debugging is also included.

Debugging Commands

Here is a list of some of the commands useful for debugging. The most useful CP
commands are:

* TRACE, which traces specific virtual machine activity and records the results on
the terminal or printer.

 DISPLAY, which displays real or virtual machine data at your terminal.

e STORE, which alters real or virtual machine data.

* VMDUMP, which dumps virtual storage in a different format than the DUMP
command. You can process the output produced by VMDUMP by using the
Dump Viewing Facility.

* DUMP, which dumps real or virtual machine data at the printer.

In addition, you may also find the SET EMSG, SET IMSG, and SET WNG
commands helpful for debugging. These commands control the display of error
message handling, certain informational responses, and WARNING command
messages.

The CMS commands described in this chapter are:

* SVCTRACE, which records information about supervisor calls (SVC) occurring
in a virtual machine. When the trace is ended, the information recorded up to
that point is spooled to the virtual printer.

The use of this command is described in more detail in |[“Using the SVCTRACE]
[command” on page 66.|

* SET AUTODUMP, which controls the creation of an automatic dump if an abend
occurs. The automatic dump can contain:

— The DMSNUC area of CMS, the storage management work area, the page
allocation table, and the loader tables

— A dump of the entire virtual machine and any discontiguous saved segments
in use.

The use of this command is described in more detail in |[“Generating CMS Abend|
[Dumps” on page 74| QUERY AUTODUMP returns the current setting of the SET
AUTODUMP command.

The following CMS commands help you debug storage-related problems in your
applications:

* STDEBUG, which traces the obtain and release requests made by your
application. This information is displayed on your console or written to a unit
record device. The trace information includes:

— The number of bytes obtained or released
— The address of storage obtained or released

— The name of the subpool that owns the storage

© Copyright IBM Corp. 1991, 2013 65

Debugging CMS

— The address of the caller to storage management.

* STORMAP, which provides storage information about your virtual machine. This
information is displayed on your console or written to a file. If you want to see
what is displayed, issue STORMAP CALL. The information may include:

— The total blocks of unallocated storage below and above the 16 MB line

— The size of the largest block of unallocated storage below and above the 16
MB line

— The name of the subpool that owns the storage

— The start address of the block of storage

— The end address of the block of storage

— The number of bytes of the block of storage

— The number of pages of the block of storage

— The storage protection key of the page in which the block resides
- Storage attributes.

* SUBPMAP, which provides storage allocation information for subpools in your
virtual machine. This information is displayed on your console or written to a
file. The information may include:

— The name of the subpool

— The storage protection key of the page

— The address of the subpool descriptor block
— The number of fully allocated pages

— The number of partially allocated pages

— Storage attributes.

In addition, several CMS commands produce or print load maps. These load maps
are often used to locate storage areas while debugging programs.

Using the SVCTRACE command

If your program issues many SVCs, you may not get all the information you need
using the CP TRACE command. The SVCTRACE command is a CMS command
that provides detailed information about all SVCs processed by your program,
including:

* Register contents before and after the SVC

* Name of the called routine and the location from which it was called

* Contents of the parameter list passed to the SVC.

See [z/VM: CMS Commands and Utilities Referencd for the format of the SVCTRACE
command.

The SVCTRACE command has only two operands, ON and OFF, to begin and end
tracing. SVCTRACE information can be directed only to the printer so you do not
receive trace information at the terminal.

Because the SVCTRACE command can only be entered from the CMS
environment, you must use the immediate commands SO (suspend tracing) or HO
(halt tracing) if you want tracing to stop while a program is running. Use the
immediate command RO to resume tracing.

66 z/VM V6.3 Diagnosis Guide

Debugging CMS

Because the CMS system is SVC-driven, this debugging technique can be useful,
especially, when you are debugging CMS programs. For more information on

writing programs to run in CMS, see [z/VM: CMS Application Development Guide for|

Tracing Capabilities in EXECs

It may be helpful to trace EXECs that are used to diagnose problems. By tracing
the EXEC, you can follow the running of the EXEC and see intermediate values
that otherwise might not be obvious. There are two EXEC processors:

* System Product Interpreter
* EXEC 2.

The amount of information displayed while running an EXEC is controlled by an
instruction. The instruction depends upon the EXEC processor you are using. To
find the correct instruction, see |z/VM: REXX/VM User’s Guide| or the EXEC 2 HELP
menu for more information.

You can also turn tracing on for the System Product Interpreter or EXEC 2 by
entering the following CMS command:

set exectrac on

This causes the tracing bit in CMS to be turned on and allows tracing without
program modification.

During interactive debug, the interpreter pauses after every instruction, allowing
you to single step through the program.

Assume that you have a Restructured Extended Executor (REXX) program called
STATUS EXEC, which gives you some status information. The contents of STATUS
EXEC follows:

/* This EXEC gives user some status information. */

trace ?i

say 'User ID: ' userid()

say 'Time : ' time()

say 'Date : ' date('w')',' date()
exit

Notice the command trace ?i, which is the second line of the program. This
command causes the program to go into interactive debug and to trace:

* All clauses before they are run
* Intermediate results during evaluation of expressions
* Substituted names.

When the STATUS EXEC is run without the trace command, you get a result that
could look like this:

User ID: GEORGEB
Time : 09:50:54
Date : Thursday, 7 Apr 1993

When the STATUS EXEC is run with the trace command, you get a result that
could look like this:

Chapter 7. Debugging CMS 67

Debugging CMS

3 x-% say 'User ID: ' userid()
>[> "User ID: "
>F> "GEORGEB"
>0> "User ID: GEORGEB"
User ID: GEORGEB
+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that
could look like this:

4 %-x say 'Time : ' time()
>> "Time : "
>F> "09:50:54"
>0> "Time : 09:50:54"
Time : 09:50:54

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that
could look like this:

5 %-% say 'Date : ' date('w')',' date()
> > "Date : "
>L> Ilwll
>F> "Thursday"
>0> "Date : Thursday"
>L> n n

>0> "Date : Thursday,"

>F> "7 Apr 1993"

>0> "Date : Thursday, 7 Apr 1993"
Date : Thursday, 7 Apr 1993

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that
could look like this:

6 *-x exit

As you can see in the previous example, the intermediate results of steps 3 through
6 of STATUS EXEC were traced, and processing stopped at each step.

The z/VM Procedures Language VM /REXX Interpreter also has a TRACE function
and instruction. See [z/VM: REXX/VM Reference| for more information on using the
TRACE instruction and TRACE function.

68 z/VM V6.3 Diagnosis Guide

Debugging CMS

Nucleus Load Map

Each time the CMS resident nucleus is built, a nucleus load map is produced as a
printer spool file by the HCP loader (HCPLDR). This occurs at the time the
nucleus load deck is IPLed from the reader. Save this load map. It lists the virtual
storage locations of nucleus-resident routines and work areas. Transient modules
are not included in this load map. When debugging CMS, you can locate routines
using this map. For information on obtaining a load map, see [z/VM: Service Guidd

Module Load Map

The module load map of a disk-resident command module contains the location of
control sections and entry points loaded into storage. It may also contain certain
messages and card images of any invalid cards or replace cards that are in the
loaded files. This load map is useful in debugging.

There are two ways to get a load map:

* When loading relocatable object code into storage, make sure that the MAP
option is in effect when the LOAD command is issued. Because MAP is the
default option, just be sure that NOMAP is not specified. A load map is then
created on the primary disk each time a LOAD command is issued. See
[CMS Commands and Utilities Reference for a description of the LOAD command.

* When generating the absolute image form of files already loaded into storage,
make sure that the MAP option is in effect when the GENMOD command is
issued. Because MAP is the default option, just be sure that NOMAP is not
specified. Enter the MODMAP command to display the load map associated
with the specified MODULE file on the terminal. See|z/VM: CMS Commands and)|
[Utilities Referencd for a description of the GENMOD and MODMAP commands.

Note: The load map displayed by the MODMAP command includes the NUCON
and SYSREF areas; the load map created by the LOAD command does not.

CMS Abend Processing

When CMS abnormally ends, any abend exit routines established through the
ABNEXIT macro or the VMERROR or VMERRORCHILD event handlers
established through EventMonitor Create receive control. These exit routines allow
you to bypass CMS abend recovery and continue processing elsewhere. If no
routine exists or the exit routine returns to CMS, the following error message
appears on the terminal:

DMSABE148T System abend xxx called from vstor

where xxx is the abend code and wvstor is the address of the instruction causing the
abend. CMS then waits for a command to be entered from the terminal.

Finding the Reason for the CMS Abend

Determine the reason CMS abnormally ended. [z/VM: CP Messages and Coded lists all
the CMS abend codes, identifies the module that caused the abend, and describes
the action that should be taken whenever CMS abnormally ends.

Types of CMS Abends
The types of CMS abnormal ends are:

1. Program exception

Chapter 7. Debugging CMS 69

Debugging CMS

Control is given to the DMSITP (CMS interrupt handler) routine whenever a
hardware program exception occurs. When a program running on a CMS
virtual machine abnormally ends (abends), you receive, at your terminal, the
message:

DMSABE141T exception exception occurred at vstor in

routine routine

DMSITP invokes DMSABE (the abend routine) and returns your virtual
machine to the CMS environment. From the message you can determine the
types of program checks (such as operation, privileged operation, execution,
protection, or addressing) and, sometimes, the instruction address in your
program at which the error occurred.

Note: routine is the command name from the last SVC issued. This routine is
not necessarily the one that had the exception but is supplied to indicate the
last command that was running when the exception occurred.

ABEND macro

Control is given to the DMSSAB routine whenever a user routine processes the
ABEND macro. The abend code specified in the ABEND macro appears in the
abnormal end message DMSABE155T. See |z/VM: CMS Macros and Functiong
for more information on the ABEND macro.

Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types HX, CMS
ends and responds with CMS. For more information on the HX command, see
[z/VM: CMS Commands and Utilities Reference

System abend

A CMS system routine can abnormally end by issuing the DMSABN macro.
The first three hexadecimal digits of the system abend code appear in the CMS
abend message, DMSABE148T. The format of the DMSABN macro is in the
[z/VM: CMS Macros and Functions Referencel

AbnormalEnd API

An application may request a user or system abend through the AbnormalEnd
CSL interface. This function signals a VMERROR event in the abending process,
and if no recovery is performed, the VMERRORCHILD event is signaled so
that a parent process can monitor when a child process is abending. See
[CMS Application Multitasking] for more information on the AbnormalEnd CSL
routine.

Collecting Information
The following actions may be useful in determining the cause of a CMS abend:

1.

Display the PSW. You can use the CP DISPLAY command to compare the PSW

instruction address with the current CMS load map to determine the module

that caused the abend. The CMS storage-resident nucleus routines reside in

fixed storage locations.

Also check the interruption code in the PSW.

Examine areas of low storage in your virtual machine.

You can find out more about the cause of the abend from the information in

the nucleus constant (NUCON) area of low storage:

a. Examine the program old PSW (PGMOPSW) at location X28'. Using the
PSW and current CMS nucleus load map, determine the failing address.

b. Examine the SVC old PSW (SVCOPSW) at location X'20'.

70 z/VM V6.3 Diagnosis Guide

Debugging CMS

c. Examine the external old PSW (EXTOPSW) at location X'18'. If the virtual
machine operator stopped CMS, this PSW points to the instruction running
when the stop request was recognized.

d. For a machine check, examine the machine check old PSW (MCKOPSW) at
location X'30'".

e. After you have identified the module that has caused the abend, examine
the specific instruction. See the source code listing if available.

f. If you have not identified the problem at this time, take a dump by issuing

the VMDUMP command.

3. Examine several other fields in NUCON to analyze the status of the CMS
system. If you are using a dump, you may return to NUCON to pick up
pointers to specific areas (such as pointers to file tables) or to examine other
status fields. The following areas of NUCON may contain useful debugging

information.

* The save area for low storage

This field, called LOWSAVE, is the first 160 bytes of low storage.

* The register save area

DMSARBE, the abend routine, saves the user's floating-point and general
purpose registers in the following fields:

Field

FPRLOG
GPRLOG
ECRLOG

e The device

Location
X'160'

X'180'
X'1C0'

Contents

User floating-point registers
User general purpose registers
User extended control registers

The name of the device causing the last I/O interrupt is in the DEVICE field

at X'26C".

* The last two commands or procedures processed

Field
LASTCMND

Location
X2A0'

Contents

The last command issued from the CMS or XEDIT
command line. If a command issued in a CMS
EXEC abnormally ends, this field contains the name
of the command. When a CMS EXEC completes,
this field contains the name EXEC. EXEC 2 and
System Product Interpreter do not update this field.

PREVCMND

X2A8'

The next-to-last command issued from the CMS or
XEDIT command line. If a command issued in a
CMS EXEC abnormally ends, this field contains the
name EXEC. When a CMS EXEC completes, this
field contains the last command issued from the
CMS EXEC. EXEC 2 and System Product Interpreter
do not update this field.

LASTEXEC

X'2B0'

The last EXEC procedure invoked. EXEC 2 and
System Product Interpreter do not update this field.

PREVEXEC

X'2B8'

The next-to-last EXEC procedure invoked. EXEC 2
and System Product Interpreter do not update this
field.

* The last module loaded into free storage and the transient area

Chapter 7. Debugging CMS 71

Debugging CMS

The name of the last module loaded into free storage through a LOADMOD
is in the field LASTLMOD (location X2C0'). The name of the last module
loaded into the transient area through a LOADMOD is in the field
LASTTMOD (location X"2C8').

* The CMSCB chain
The pointer to the first CMSCB is in the FCBTAB field located atX'5C0'. Each
CMSCB contains simulated OS control blocks for a particular file or device
and resides in free storage. The CMSCB contains a PLIST for CMS I/O
functions, a simulated job file control block (JFCB), a simulated data event
block (DEB), and the first in a chain of I/O Blocks (IOBs). The first fullword
of each CMSCB contains a 24-bit pointer to the next CMSCB.

¢ The last command entered
The last command entered from the terminal is stored in an area called
CMNDLINE (X'740'), and its corresponding PLIST is stored at CMNDLIST
(X'848").
* The external interrupt work area
EXTSECT is a work area for the external interrupt handler. It contains:
— The PSW, EXTPSW.
— Register save areas, EXSAVEL.
— A separate area for timer interrupts, EXSAVE.
* The 1/0 interrupt work area

IOSECT is a work area for the I/O interrupt handler. The oldest and newest
PSW and CSW are saved. Also, there is a register save area.

¢ The program check interrupt work area

PGMSECT is a work area for the program check interrupt handler. The old
PSW and the address of the register 13 save area are stored in PGMSECT.

e The SVC work area

SVCSECT is a work area for the SVC interrupt handler. It also contains the
first four register save areas assigned. The SFLAG indicates the mode of the
called routine. Also, the SVC abend code, SVCAB, is located in this CSECT.
* The simulated Communications Vector Table (CVT)
The CVT, as supported by CMS, is CVTSECT. Only the fields supported by
CMS are filled in.
* The active disk table and active file table
For file system problems, examine the active disk table (ADT) or active file
table (AFT) in NUCON.

4. If monitoring a VMERROR or VMERRORCHILD event, you may retrieve event
data that gives information about the abend. The data can be mapped by
VNCABNH or VMASMABN macros. See k/VM: CMS Application Multitasking|
for more information.

A sample utility program called DACBGEN is provided on the MAINT 193 disk.
This can be used to format CMS or CP control blocks into readable/printable
formats. In addition to providing output that can be formatted with BookMaster®,

it can also be used for customer-written control blocks that adhere to a prescribed
format. See the DACBGEN README file on the MAINT 193 disk for details.

Note: The output from the DACBGEN utility is z/VM product implementation
information for diagnosis and must not be used for programming purposes.

72 z/VM V6.3 Diagnosis Guide

Debugging CMS

Register Use
To trace control blocks and modules, it is important to know the CMS general
purpose register (GPR) usage conventions:

GPR Contents

1 The address of the PLIST

12 The program's entry point

13 The address of a 12-doubleword work area for an SVC call
14 The return address

15 The program entry point or the return code

This information should help you read a CMS dump. If it becomes necessary to
trace file system control blocks, yvou can use the TRACE GPR command described
in /VM: CP Commands and Utilities Referencd With a dump, the results of the trace,
and a CMS load map, you should be able to find the cause of the abend. If you
choose to use a dump, the DUMPLOAD utility and the Dump Viewing Facility
will help you process and use it.

Some Debugging Tips
Here are some tips for debugging after receiving a program check abend (for
example, DMSABE141T):

* DMSITP, the CMS program interrupt handler, or DMSABE, the CMS abend
processing module, issues error messages when a program check occurs. If a
SPIE or a STAE has been issued, control is passed to the specified routine;
otherwise, control passes to DMSABE to try to recover from the error. If the
message DMSITP144T is issued, the UFDBUSY byte is not zero and control is
halted after the message is typed. If the wait state bit is turned off in the PSW,
control continues as above. Also, if the error occurred during the running of a
system routine, control is halted until the wait state bit is turned off or CMS is
re-IPLed.

Note: Turning off the WAIT bit may cause damage. Use caution.

* To determine the registers and PSW at the time of the abend, get the address of
PGMSECT in the nucleus constant area (NUCON X'654"). The old PSW is stored
at label EPIEPSW, X'58' bytes into the DSECT. This is followed by the registers at
label EPIEREGS (X'18'). The program interrupt element (PIE), needed by SPIE,
primarily uses these areas. Registers 0 through 15 are stored at offset X'3C" into
the DSECT. The SPIE/STAE routine or the DMSSAB routine uses the other areas
within the DSECT.

* Another aid to debugging is the SVC save area (SVCSAVE) for the virtual
machine. Offset X'528' in NUCON points to these areas. The save areas are easily
recognizable by the check words ABCD and EFGH contained within them. The
address of the SVC caller is stored at offset 4, and the name of the routine being
called is saved at offset X'8'. At offset X'10', the old PSW of the caller is stored,
and offsets X'18' and X'1C' hold the addresses for the normal return and the
error return, respectively.

Registers 0 through 15 are stored at offset X'20', followed by the floating-point
register at X'60'. After the first check word (ABCD), the address of the next
SVCSAVE area is stored, followed by the address of the previous SVCSAVE area
and the address of the user's area. If the address of the next or previous
SVCSAVE area is zero, the chain is ended.

Access registers 0 through 15 are stored at offset X'D4'".

Chapter 7. Debugging CMS 73

Debugging CMS

Using CMS to Debug

After an abend, you can use CMS to debug the problem. When the information
provided by the abend message does not immediately identify the problem in your
program, or if you think the debugging facilities of CMS are not appropriate, you
should begin debugging procedures using z/VM. For instructions on how to use
the CP commands, see ["Commands That Monitor Events” on page 27| 1f you
choose to produce a dump to help you debug the problem, see |”Reading CM§|
|[Abend Dumps” on page 75 for information on reading a CMS dump. If you can
reproduce the problem, you can use the Dump Viewing Facility to process the
dump or look at the trace table.

The most common problem you might encounter is an abnormal end resulting
from a program interruption.

Sometimes the information provided by the abend message is enough for you to
correct the error in your source program, recompile it, and attempt to run it again.

If a CMS command is now issued, the abend routine, DMSABE, performs abend
recovery and then passes control to the DMSINT routine to process the command
just entered.

Setting Machines to Automatically Create Dumps

The following describes the commands to use for automatically create dumps.

Generating CMS Abend Dumps

By using the SET AUTODUMP command, you can automatically generate a dump
of your entire virtual machine or selected parts of it whenever a CMS abend
occurs. You can create a dump for irrecoverable CMS system abends for all abends
that occur in your virtual machine, or you can choose not to create a dump
automatically.

When you use the SET AUTODUMP command, you can generate a dump
containing the DMSNUC area of CMS, the storage management work area, the
page allocation table, and the loader tables.

SET AUTODUMP CMS generates a dump for the following system errors:
* Program checks within nucleus resident modules

* Irrecoverable errors in the file system

¢ Irrecoverable storage management errors

* All other errors that result in a disabled wait PSW.

SET AUTODUMP CMS is the default.

SET AUTODUMP ALL dumps storage for all abends in the virtual machine. In
addition to the abend conditions stated above, SET AUTODUMP ALL dumps
storage for:

* All program checks
e The use of the ABEND macro
e The use of the DMSABN macro.

74 z/VM V6.3 Diagnosis Guide

Debugging CMS

The SET AUTODUMP CMS ENTIREVM and SET AUTODUMP ALL ENTIREVM
commands dump your entire virtual machine, all the discontiguous saved
segments (DCSSs) currently in use, and data spaces that contain server data (in CP
format).

If you do not want to create dumps automatically, you can turn AUTODUMP off
using SET AUTODUMP OFF.

If you are unsure of the setting of AUTODUMP, enter the QUERY AUTODUMP
command for the current setting of your virtual machine.

If you have set AUTODUMP to ALL or CMS, the dump is produced using the CP
VMDUMP command. The dump is sent to the reader of the virtual machine that
abended. This user also receives a message saying that the dump has been taken.
For more information on the SET AUTODUMP and QUERY AUTODUMP
commands, see [z/VM: CMS Commands and Utilities Reference}

You can use the DUMPLOAD utility to process the dump and the DUMPSCAN
command (CMSPOINT subcommand) of the Dump Viewing Facility to view it. For
more information on the DUMPLOAD utility see [z/VM: CP Commands and Utilitied
Referencel for more information on the DUMPSCAN command, see |Z/VM: Dumd
Viewing Facilit

Reading CMS Abend Dumps

If you want to produce an abend dump when CMS abnormally ends, enter:

#cp vmdump 0-end format cms dss

By issuing this command, a dump spool file is created and sent to your reader.
Re-IPL CMS and use the DUMPLOAD utility to format the dump into a usable
form. The dump formats and prints:

¢ Access registers

* General purpose registers (GPRs)

* Extended control registers

* Floating-point registers

 Storage boundaries with their corresponding storage protect key
* Current PSW

* Selected storage.

Storage is printed in hexadecimal representation, eight words to the line, with
EBCDIC translation at the right. The hexadecimal storage address corresponding to
the first byte of each line is printed at the left.

When CMS can no longer continue, it abnormally ends. To debug CMS, first
determine the condition that caused the abend and then find why the condition
occurred. To find the cause of a CMS problem, you must be familiar with the
structure and functions of CMS. You also need a current CMS nucleus load map to
analyze the dump.

Looking at Dump Errors
The CMSDUMP serviceability aid may be helpful when you are looking at CMS
control blocks or free storage chains within a CMS dump. The CMSDUMP aid is

shipped with z/VM version 6 release 3 on an “as is” basis, to optionally be
installed on the MAINT 193 disk. The documentation for CMSDUMP comes with

Chapter 7. Debugging CMS 75

Debugging CMS

the serviceability aids package. For more information see the HELPXEDI
CMSDUMP file that comes with the package on MAINT's 193 disk.

Creating Dumps in Case of Messages

By using the SET TRAPMSG command, you can automatically generate a dump of
your entire virtual machine or selected parts of it whenever a specific CMS
message occurs. Use the SET TRAPMSG command to set a trap to spring on a
particular message, and optionally, to specify how much storage to dump.

SET TRAPMSG ON must be specified with a message number or message ID
parameter. Unless a range is specified, the default dump range is ‘0 to vmsize-1'.

The dump will generate a VMDUMP format spool file when the trap springs. The
type of virtual machine being dumped is CMS. The dump can be viewed using the
Dump Viewing Facility.

You can check whether a TRAPMSG has been set using the QUERY TRAPMSG
command.

SET TRAPMSG OFF is the default setting.

For more information about the SET TRAPMSG command see |z/VM: CMS
(Commands and Utilities Reference)

Printing a CMS Dump File

Use the Dump Viewing Facility PRTDUMP command to print CMS dump files that
were previously created with the DUMPLOAD utility. See /VM: Dump Viewing|
Facilita for more information on the PRTDUMP command and |z/VM: CP Commands|
and Utilities Reference| for more information on the DUMPLOAD utility.

Commands That Alter the Contents of Storage

You can use the STORE (Guest Storage) and STORE (Host Storage) commands to
alter the contents of virtual machine storage and host storage, respectively.

You can use the ZAP and ZAPTEXT commands to alter modules, OS LOADLIBS,
TEXT libraries, or TEXT decks before the code is loaded and run.

The ZAP command is described in the |z/VM: CMS Commands and Utilities Referencd
and the ZAPTEXT command is described in the |z/VM: VMSES/E Introduction and|
|i§eferencel For information on the STORE (Guest Storage) and STORE (Host Storage)
commands, see |”A1tering Contents of Virtual Machine Storage (STORE Guest|
Command)” on page 32 and |”Altering Contents of Host Storage (STORE Host|
Command)” on page 33 as well as the z/VM: CP Commands and Utilities Reference)

Diagnosing SFS Related Application Errors

Applications and CMS commands manipulate files residing on the Shared File
System in the following ways:

 Callable Services Library (CSL) Routines
* CMS File System macros
* OS Simulation macros.

76 z/VM V6.3 Diagnosis Guide

Debugging CMS

The causes of SFS related errors and warnings are well defined to applications that
use CSL routines, particularly when the extended error (WUERROR) parameter is
included when manipulating files on SFS.

Applications that use CMS file system or OS macros to manipulate SFS files may
not get enough information through the defined interface to enable an application
developer or system programmer to properly diagnose the cause of the error.
However, the internal DMSFSERR trace table maintains SFS diagnostic
information relating to recent errors and warnings detected by these macro
services.

This table is allocated when the first SES error or warning is detected by CMS File
System macro services following an IPL of CMS. It will maintain a number of error
records. That number is defined in the FVS control block, in the FVSFSSZ field.

The DMSFSERR table may be of particular benefit for intermittent errors, which
are difficult to trace.

The format and contents of the DMSFSERR table as well as the other CMS control
blocks referenced below are documented at the url: IBM: z/VM Internet Library It
can be located in storage of the virtual machine experiencing the problem as
follows:

1. Find the location of the AFVS field in NUCON (NUCON is at offset 0 in the
virtual machine.) The value in AFVS contains the address of the FVS control
block.

2. Locate the FVSFSER field in the FVS control block.

3. If the value in the FVSFSER field is zero, there is no DMSFSERR trace table
allocated. If the value is non-zero, it will point to the start of the table.

4. The value in FVSFSER contains the address of the DMSFSERR table. Within
DMSFSERR, the value in FSESIZE indicates the size of the table in bytes. By
finding the value in FSECURSR and backing up one entry, you can find the
most recent error entry. Use the DMSFSERR macro to see how the data is
arranged. Note that date and time information can help you navigate through
the table. Also note that when the table is filled, it will wrap to the beginning.

In most cases the file id, file system operation name, return code, and reason code
data in the FS error trace table will be sufficient to diagnose the cause of the error.
These reason codes are documented in the CMS Messages and Codes
documentation in the CSL Reason Code section of the [z/VM: CP Messages and

[Coded

Extended error information is available in many cases if additional diagnostic
information is needed. See the WUERROR and FPERROR macro descriptions in
k/VM: CMS Macros and Functions Reference for the layout of SFS extended error
information.

The FS2SFSER sample program may be useful for displaying the contents of the
DMSEFESERR trace table in your virtual storage. Note that it is distributed on an “as
is” basis, to be installed as a sample on the MAINT 193 disk. For more
information, see the file HELP FS2SFSER.

Diagnosing CMS File System Errors

In addition to application errors, the CMS minidisk file system may detect some
structural errors or irrecoverable processing failures. Some symptoms of file system
errors are:

Chapter 7. Debugging CMS 77

Debugging CMS

78

The CMS file system detects an irrecoverable error. This is accompanied by a
DMS1307T message; the system is placed in a disabled wait, and a VM dump is
generated.

Files cannot be read from minidisk.

A CMS formatted minidisk cannot be accessed (device error on access).
Duplicate files appear on a CMS minidisk.

Files disappear from a CMS minidisk.

Some file integrity errors may be temporary, for example, when a disk is accessed
read only and there are updates to the disk. However, other errors may be
indications that the minidisk has been damaged. While minidisk corruption may
be due to any number of factors, some of the more frequent include:

Hardware I/0 errors

Invalid configuration of minidisks (for example, overlapping minidisk extents in
the CP directory or allocation of the real pack not in PERM space.)

Multiwrite links to a CMS formatted minidisk

Applications that modify the virtual device addresses or links of minidisks
accessed in R/W mode without releasing the file mode .

File mode 6 (update-in-place) files open for output during a system crash
Minidisk caching of shared DASD

Release of storage that is critical to the file system

Overlays of critical file system storage

Timing errors

Use of undocumented file system interfaces or control blocks by applications or
IBM program products.

Storage management chain corruption
VM/CMS system errors.

Notes:

1.

CMS minidisk corruption may be experienced as a side-effect of other system
outages or failures, some that appear to be unrelated. It is therefore
recommended that you examine any EREP data when there is minidisk
corruption.

Minidisk corruption may be detected a long time after the minidisk was
actually corrupted. For example, when a file block is marked as belonging to
two different files (via pointer blocks or FSTs), frequently the error is first
detected when the second file is erased.

After any corruption of a minidisk has been detected, it is recommended that
all files unaffected by the corruption be copied to another disk, the corrupted
disk be reformatted, and data be copied back to the newly formatted disk.
Otherwise additional latent disk corruption may surface.

If I/O errors are present, you may wish to attempt to move the minidisk to
another physical pack.

Consider using MDCHECK to analyze minidisks in which corruption is
suspected. MDCHECK is an optionally installed diagnostic aid available on the
MAINT 193 disk. See [“Diagnosis Tools Available” on page 80

When an error appears to be caused by a CP I/O error, return information may
be available in DIOSECT.

If a storage overlay is suspected, examine some of the following data areas:
a. Active Disk Table (ADT)

z/VM V6.3 Diagnosis Guide

Debugging CMS

b. Active File Table (AFT) if one exists
c. Device Table (DEVTAB) for the affected device.

Diagnosing Data Compression Services System Errors

When using Data Compression Services to compress your data, you will be
building both a compression and expansion dictionary on your A-disk. You must
set up your A-disk as a read/write disk and allocate enough space so that the
output files generated by the CSRBDICV EXEC will execute correctly. Messages
that are requested with the msglevel argument will also be written to your A-disk.
If sufficient space is not allocated, the output will be incomplete and unpredictable
results will occur.

If you get the message
colaps must be X, L, AM, or AAM

when you are using the CSRBDICV EXEC to build compression and expansion
dictionaries, you must:

1. Check that one of the valid values has been entered in the colaps argument
positional offset

2. Ensure that there are no sequence numbers in the far right columns of the
SPECFILE data which would offset the positional specifications. If they are
present, delete the sequence numbers.

If you are using the CSRBDICV EXEC and a REXX fixed point overflow error
occurs, you must:

1. Check that the SPECFILE data has been accessed correctly. The scanfilename
BDICTsf file will contain the SPECFILE data image read during processing.

2. Check that the maxnodes value which has been entered is large enough to
account for at least the base number of nodes in each size of dictionary.

Note: To ensure your maxnodes is always set correctly, do not set it for less than
the dictionary size number of entries. For example, a .5K dictionary should
have a maxnodes of at least 512; a 1K dictionary should have a maxnodes of least
1024.

3. Check if the scan data is unusually large or the stepping argument of the
SCANFILE forces most lines to be hit in one pass. If this exists, then either:

* Increase the maxnodes value to a number near the value returned by the TN
argument for the maxnodes approximation, or

* Adjust the stepping argument value to hit fewer lines per pass.

After expanding a string of data, you may notice unexpected characters at the end
of the string. To correct this, you must check the CMPSC_BITNUM bit in the
CMPSC_DICTADDR_BYTE3 field of the CSRYCMPS area after a call to Data
Compression Services. If this bit is on, you must add 1 to the length of the source
area before calling Data Compression Services to expand your data. To test this bit,
use a TM instruction.

CMS OS/VSAM users can find error code information in the “OS/VSAM Error
Codes” section of the [z/VM: CMS Application Development Guide for Assembler| for
OPEN, CLOSE, and I/0O Request error code tables.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM
Version 6 Release 1 Commands, VSE/VSAM Version 6 Release 1 User’s Guide and
Application Programming, and VSE/ESA Version 2 Release 1 Messages and Codes.

Chapter 7. Debugging CMS 79

Debugging CMS

When Calling IBM Software Support

If the problem persists, and you are unable to determine the cause of the problem,
contact your IBM software support center. The following information will be of
help when diagnosing the problem:

1. System dumps are generated by DMSDKD1307T error messages when the file
system detects an irrecoverable error, unless SET AUTODUMP has been set to
off. These should be retained to analyze the problem if needed.

2. Make a copy of the affected minidisk as soon as possible after minidisk
corruption has been detected using the CP DASD Dump Restore (DDR) utility.

Diagnosis Tools Available
The following diagnosis aids may be useful in assisting you to diagnose file system

failures. These are provided on an “as is” basis, to be installed as samples on the
MAINT 193 disk.

AFTCHAIN
may be used to determine what files are currently open, and optionally

display or format Active File Table entries associated with each open CMS
file.

MDCHECK
may be used to validate the integrity of a CMS minidisk, and optionally
recover most of its contents. Note that when MDCHECK is first run
against a minidisk, pre-existing (or latent) disk corruption may be detected.

PRINTFST
may be used to display the contents of a file status table (directory) entry.

PRINTBLK
may be used to display the contents of a minidisk file block.

Note that documentation for these service aids is included as part of the tools
themselves.

80 z/VM V6.3 Diagnosis Guide

Chapter 8. Debugging CMS Pipelines

This chapter describes how to debug a problem in CMS Pipelines. This information
includes techniques you can use to help isolate the problem to a particular stage of
a pipeline or to a particular module in CMS Pipelines. You can then provide the
information you collect to your IBM service representatives to assist them in
resolving the problem.

The following sections describe debugging:
* A program exception in CMS Pipelines

* Incorrect output from CMS Pipelines

* A CMS Pipelines stall.

Debugging a Program Exception in CMS Pipelines

A program exception in CMS Pipelines may be caused by an error in CMS
Pipelines or in a user program. Addressing or protection exceptions are often
caused by a user program calling another program with registers set incorrectly. To
isolate a program exception in CMS Pipelines, it is necessary to find the module
where the error occurred and the displacement of the failing instruction in the
module.

The first time CMS Pipelines is started, it installs itself as a nucleus extension. If
you do not know whether CMS Pipelines has been started, enter the following
command to start it and display an informational message about the version of
CMS Pipelines that you have started:

pipe query

After starting CMS Pipelines, if you enter:

nucxmap

you will see results similar to this:

Name Entry Userword Origin Bytes Amode (Attributes)
PIPE 03E4B5F0 03F788B8 03E4B5F0 00000000 31
PIPMOD 03E48000 03F788B8 03E48000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPSYSF 00E29008 00000000 00E29000 00021658 31 SYSTEM SERVICE
*PIPPTFF 03F49026 00000000 03F49000 00001738 31 SYSTEM SERVICE

DMSEXT 00E25000 00000000 OOE25000 00002478 24 SYSTEM PERM
DMSSEGLP 83F90398 00000000 00000000 00000000 31 SYSTEM PERM
SEGRSRV ~ 03F90398 00000000 03F90398 000007C8 31 SYSTEM SERVICE PERM
OVLYMGR ~ 00E99000 00000000 0OE99000 00001A88 ANY SYSTEM SERVICE PERM

NAMEFUSE 011D43A0 03F7F558 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFSYS 011D43A0 03F9E4E8 011D43A0 00000000 31 SYSTEM SERVICE
Ready;

PIPE is the bootstrap module used to load the CMS Pipelines module. PIPMOD is
the CMS Pipelines nucleus extension that contains the DMSPIPE module. From the
sample results shown previously, you see that PIPMOD is located at virtual storage
location 3E48000 and has a length of 86948 bytes. The address at which PIPMOD is
loaded in your virtual machine may be different.

© Copyright IBM Corp. 1991, 2013 81

Debugging CMS Pipelines

82

Calculating the Displacements of the Failing Module

To calculate the displacement in PIPMOD of the failing instruction, subtract the
address at which PIPMOD is located from the address of the failing instruction.

To determine the name of the failing module and the displacement of the failing
instruction within the module, follow these steps:
1. Enter the following command to create a file, PIPE MAP A, that contains a list
of the CMS Pipelines modules sorted in order of decreasing address:
pipe cms modmap dmspipe | strfind /FPL/ | > PIPE MAP A

Note: If you receive a message indicating a loader table overflow, you need to
increase the number of pages of storage to be used for loader tables. See the
SET LDRTBLS command in [z/VM: CMS Commands and Utilities Reference|for
more information.

2. Edit the PIPE MAP A file. Obtain the address of module FPLGDTEP, which is
the first module loaded in PIPMOD. It is the last module with a file name
starting with FPL listed in PIPE MAP A.

3. Add the value you calculated for the displacement of the failing instruction in
PIPMOD to the address of FPLGDTEP in PIPE MAP A. The sum is the address
of the failing instruction relative to the addresses contained in PIPE MAP A.

4. Using PIPE MAP A, find which module contains the address of the failing
instruction. You now have the name of the failing module.

5. Subtract the address shown in PIPE MAP A for the failing module from the
sum you calculated in step El The result is the displacement of the failing
instruction in the failing module.

Recreating the Problem

Before recreating the program exception, enter the following CP commands:

set run off
This makes your virtual machine stay in a stopped state while you display the
contents of registers and storage.

trace prog
This causes CP to be entered as soon as the program exception occurs.

spool console * start
This creates a virtual reader spool file containing all line mode output
displayed at the console.

You are now ready to recreate the problem and record the diagnostic information.
When the program exception is reported by CP, follow these steps:

1. Record the address of the failing instruction displayed by CP.

2. Enter the following command to display storage just before and after the failing
instruction:

display txxxxxxxx

where xxxxxxxx is the address of storage a few bytes before the failing
instruction address.

3. Enter the following command to display the contents of the general purpose
registers:

display g
4. Enter the following command to display storage before the address contained
in the base register, register 12:

z/VM V6.3 Diagnosis Guide

Debugging CMS Pipelines

display txxxxxxxx.20

where xxxxxxxx is about 32 bytes less than the address contained in the base
register.

5. Enter the following commands:

begin
spool cons stop close

to capture the console output and place it in a spool file in your virtual reader.
6. Calculate the displacement of the failing instruction in PIPMOD.

7. Calculate the displacement of the failing module in PIPMOD and the
displacement of the failing instruction in the module.

Examples

The following are examples of program exceptions in the CMS Pipelines module,
DMSPIPE. To cause the program exceptions to occur, storage containing DMSPIPE
is intentionally altered for the purpose of illustration. Normally, if you receive a
program exception, storage has been altered unintentionally by a program error.

Example of a Protection Exception in CMS Pipelines

In this example, a ST (store) instruction at virtual storage location 03E94CES is
altered to use a base register of 4 rather than 13. This produces a protection
exception.

To determine the address at which DMSPIPE is loaded, enter:

nucxmap

Name Entry Userword Origin Bytes Amode (Attributes)

PIPE 03E4B5F0 03F788B8 O3E4B5F0 00000000 31

PIPMOD 03E48000 03F788B8 03E48000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPSYSF 00E29008 00000000 00E29000 00021658 31 SYSTEM SERVICE
*PIPPTFF 03F49026 00000000 03F49000 00001738 31 SYSTEM SERVICE
DMSEXT 0OE25000 00000000 OOE25000 00002478 24 SYSTEM PERM

Ready;

The contents of storage at 03E94CES is a ST instruction in DMSPIPE. The following
CP command displays storage contents at that address:

cp display t03E94CES.20

RO3E94CEO O5CO1FEE 90DE1004 5010D008 18FD18D1 F4 *........ & J*
RO3E94CFO 98E1FOOC 18BDD20F BO6OCICE D20BBO50O *q.0...K..-A.K..&*
Ready;

The ST instruction is altered by the following CP STORE command:

store sO3E94CE8 50104008
Store complete.
Ready;

The following CP command displays the altered storage contents:
cp display TO3E94CE8.20

RO3E94CEO 05COLFEE 90DE1004 50104008 18FD18D1 F6 *........ & ... J*
RO3E94CFO 98E1FOOC 18BDD20F BO6OC1CE D20BB0O50 *7.0...K..-A.K. . &*
Ready;

The following commands are entered to assist in debugging:

set run off
trace prog
spool console * start

Chapter 8. Debugging CMS Pipelines 83

Debugging CMS Pipelines

84

Enter the following PIPE command to recreate the problem:

pipe cp query time | console
-> 03E94CE8 ST 50104008 >> 00000008 cC 2
*+% 03E94CE8 PROG 0004 -> OOF3DEBO PROTECTION

The following command displays the contents of the general registers:

display g

GPR 0 = 03F77CF0 03F6E470 03F77FEB 00000008
GPR 4 = 00000000 03F781D8 03F77C70 00000364
GPR 8 = 03E94F09 03F781D8 03E94ECO 03F77C60
GPR 12 = 83E94CE2 03F71860 00000000 03E94CDC

In this example, register 15 is the base register. It points to the entry point address
of the module containing the failing instruction. The following command displays
the contents of storage a few bytes before the failing instruction (including the “eye
catcher”):

D T3E94CDC.40

RO3E94CDO 0©0O0OODCA C3D7E2E8 D5E34040 90ECDOOC F6 *....CPSYNT*
RO3E94CEO O5CO1FEE 90DE1004 50104008 18FD18D1 LN & ..., J=*
RO3E94CFO 98E1FOOC 18BDD20F BO6OCICE D20BBO50 *q.0.. . K. -ALKL L&
RO3E94D00 C1BE58FO 905005EF 9023B048 5040B0O5C *A..0.&. ... & xx

RO3E94D10 4180B1B8 41FOB1B8 50FOBO64 50FOBO6C Koo 0..80..80.%*

The following command resumes running of the PIPE command:

begin

FPLINX410E ABEND 000000C4 at O3E94CEC; PSW 03EC2000 83E94CEC 00040004.
FPLINX4111 In CPSYNT; offset 00000DE4 in FPLCOM 08/21/97 17.27.
FPLINX412I ... GPRO: O3F77CFO O3F6E470 O3F77FEB 0000000B.

FPLINX412I ... GPR4: 00000000 03F781D8 03F77C70 00000364.

FPLINX412I ... GPR8: 03E94F09 03F781D8 03E94ECO 03F77C60.

FPLINX412I ... GPRC: 83E94CE2 03F71860 00000000 03E94CDC.

FPLINX4131 Store O3E94CE0: O5COLFEE 90DE1004 50104008 18FD18D1 98E1FOOC.
DMSABE141T Protect1on exception occurred at 83E94CEC in routine PIPE

CMS

Note that CMS Pipelines detects the problem and issues the appropriate messages
needed to isolate the problem including the name of the failing module and the
displacement of the failing instruction in the module. (The displacement actually
points to the instruction following the failing instruction.)

The following command captures the console output and places it in a virtual
reader spool file:

spool console stop
Ready;

If CMS Pipelines had not issued messages containing the information needed to
isolate the problem, the failing module name and the displacement of the failing
instruction can be calculated. The following message:

DMSABE141T Protection exception occurred at 83E94CEC in routine PIPE

gives the address of the instruction following the failing instruction. The address of
the failing instruction is 03E94CES. Enter the following PIPE command to create a
file, PIPE MAP A, containing a list of the CMS Pipelines modules and their
corresponding addresses:

pipe cms modmap dmspipe | strfind /FPL/ | > PIPE MAP A
Ready;

The following shows a portion of PIPE MAP A:

z/VM V6.3 Diagnosis Guide

Debugging CMS Pipelines

FPLRAN 3EOE232
FPLCOMWR 3EOCF2A
FPLCOM 3EOCFO8
FPLRVR 3EOAF10

The following calculations are then performed:

address of failing instruction 03E94CE8
- address of PIPMOD (from NUCXMAP) 03E48000
= displacement of instruction in PIPMOD 0004CCE8
+ address of FPLGDTEP in PIPE MAP A 03DC1000
= address of failing instruction O3EODCE8

relative to PIPE MAP A addresses

The data in PIPE MAP A shows that address 03E94CES8 is in module FPLCOM.

address of failing instruction O3EODCE8
relative to PIPE MAP A addresses
- address of FPLCOM 03EOCFO8

= displacement of instruction in FPLCOM 0Q000ODEO

The failing module is FPLCOM and the displacement of the failing instruction in
FPLCOM is 00000DEQ. This information matches the information in the messages
issued by CMS Pipelines.

Example of an Operation Exception in PIPMOD
In this example, an L (load address) instruction at address 03E49434 in PIPMOD is
altered. This causes an operation exception.

To determine the address at which PIPMOD is loaded, enter the following
command:

nucxmap

The following shows a portion of the output from nucxmap:

Name Entry Userword Origin Bytes Amode (Attributes)
bMSEXT 00E25000 00000000 OOE25000 00002478 24 SYSTEM PERM
PIPMOD 03E49000 03F4F560 03E49000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPSYSF 00E29008 00000000 00E29000 00021658 31 SYSTEM SERVICE
*PIPPTFF 03F4A026 00000000 03F4A000 00001738 31 SYSTEM SERVICE

Ready;

Storage at 03E49434 contains an L instruction. The following CP STORE command
changes the L instruction to load register 15 with zero:

store s03E49434 41F00000
Store complete.
Ready;

Enter the following commands to assist in debugging:

set run off
trace prog
spool console * start

Enter the PIPE command to recreate the problem:

pipe query level
00000000 ???? O3EC
**% 00000000 PROG 0001 -> OOF3DEBO OPERATION

Chapter 8. Debugging CMS Pipelines 85

Debugging CMS Pipelines

86

The following command displays the contents of the general registers:

display g

GPR 0 = 00000001 ©O3F883EO OOEAEFA5 0000000C
GPR 4 = 00000000 00000000 O3F87F98 03F88078
GPR 8 = 03F4AC8F8 03F4F844 03F4F560 03F88000
GPR 12 = 83E49254 03F88000 83E4943A 00000000

The following command displays storage just before the address contained in the
base register, register 12:
D T3E49240.20

RO3E49240 (8C50000 0024C6D7 D3CID5E7 DID59OEC F6 *HE....FPLINXRN..*
RO3E49250 DOOCO5CO 5810D008 1FEE9ODE 100418FD K, *

The following command resumes running of the PIPE command:

begin
DMSABE141T Operation exception occurred at 80000002 in routine PIPE

The following command captures the console output and places it in a virtual
reader spool file:

spool console stop
Ready;

In this case, CMS Pipelines does not issue any messages so calculations must be
performed to determine where the error occurred. The most likely cause of an
operation exception in low storage is a branch instruction with an incorrect branch
address. Because branches are normally performed using register 14 as the return
address, the contents of storage just before the address contained in register 14
must be examined to find the failing instruction. Storage contents at this address
were previously displayed while displaying storage at the address contained in the
base register.

Storage at 03E49438 contains O5EF which is a BALR 14,15 instruction. Because
register 15 contains a zero, the operation exception occurred. Therefore, the address
of the failing instruction is 03E49438. Note that storage just before the BALR
instruction contains the L instruction that was altered.

To calculate the name of the failing module and the displacement of the failing
instruction in the module, enter the following PIPE command to create a file, PIPE
MAP A, containing a list of the CMS Pipelines modules and their corresponding
addresses:

pipe cms modmap dmspipe | locate 1.3 /FPL/ | pipe map a
Ready;

The following shows a portion of PIPE MAP A:

FPLSQIPR O3E44COE
FPLSQIRR O3E44AF2
FPLSQIRB 03E44A02
FPLSQICR O3E448EA
FPLSQICM O3E447FA
FPLSQICN 03E48532
FPLSQIDZ O3E488E8
FPLSQL 83E425E8
FPLSPXPT 83E424B0
FPLSPX 83E3F830

The following calculations are then performed:

z/VM V6.3 Diagnosis Guide

address of failing instruction
- address of PIPMOD (from NUCXMAP)

displacement of instruction in PIPMOD

+ address of FPLGDTEP in PIPE MAP A

= address of failing instruction
relative to PIPE MAP A addresses

Debugging CMS Pipelines

03E49438
03E49000

00000438
03D55000

03D55438

The data in PIPE MAP A shows 03E49434 is in module FPLINX.
03D55438

address of failing instruction
relative to PIPE MAP A addresses
- address of FPLINX

= displacement of instruction in FPLINX

The failing module is FPLINX and the displacement of the failing instruction in

FPLINX is 218.

03D55220

00000218

Debugging Incorrect Output From CMS Pipelines

If a CMS Pipelines application fails to produce expected output or produces

unexpected output, you can use the following techniques to isolate the problem:

* Add temporary stages to the pipeline to write out the data as it passes from one
stage to another.

* Use the CMS Pipelines TRACE option.

Adding Temporary Stages to Write Out the Data

If a pipeline produces incorrect output, you can add temporary stages between

each stage of the pipeline to write the stream to an accessed disk or directory. This

helps you see what changes are made to the data as it passes from one stage to
another.

Example
Suppose you receive the following output displayed on an 80-column display
terminal after entering the NUCXMAP command:

Name
NAMEFIND
PIPMOD
*PIPPTFF
*PIPSYSF
DMSEXT
PERM
ERASE
NAMEFUSE
NAMEFSYS
Ready;

Entry

011D43A0
03E49000
0OE6E026
00E4C008
00DCB0OOO

03F21F3E
011D43A0
011D43A0

Userword
7FFFFFFF
00000000
00000000
00000000
00000000

00E95110
03F80B58
03F9E5D8

Origin

011D43A0
03E49000
00E6E000
00E4C000
00DCBOOO

03F21910
011D43A0
011D43A0

Bytes

00000000
00086948
00003108
00021658
00002478

00000000
00000000
00000000

Amode

(Attributes)

SYSTEM SERVICE

SYSTEM SERVICE IMMCMD
SYSTEM SERVICE

SYSTEM SERVICE

SYSTEM

SYSTEM SERVICE
SYSTEM SERVICE
SYSTEM SERVICE

To sort the output by nucleus extension name and to discard the heading line and
the extra line containing the word PERM, create and start the following exec
procedure:

/% x/

'pipe cms nucxmap',
"Inlocate string /Name/',
"InTocate string /PERM/',
"Isort 1.8',

console'

Chapter 8. Debugging CMS Pipelines

87

Debugging CMS Pipelines

The output displayed by the exec is:

*PIPPTFF OOE6E026 00000000 OOE6EQO0 00003108 24 SYSTEM SERVICE
*PIPSYSF 00E4C008 00000000 OOE4CO00 00021658 31 SYSTEM SERVICE
ERASE 03F21F3E 00E95110 03F21910 00000000 31 SYSTEM SERVICE
NAMEFIND 011D43A0 03F80E48 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFSYS 011D43A0 03F9E5D8 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFUSE 011D43A0 03F80B58 011D43A0 00000000 31 SYSTEM SERVICE
PIPMOD 03E49000 03F8F8A8 03E49000 00086948 31 SYSTEM SERVICE IMMCMD

The exec sorted the output and removed the extra lines, but the information about
DMSEXT was incorrectly removed. To determine whether this is a user error or
CMS Pipelines error, add temporary stages to the exec to write the stream to your
A-disk as follows:

/% */

'pipe cms nucxmap',

> pipe templ a',

"| nlocate string /Name/',
"| > pipe temp2 a',

"| nlocate string /PERM/',
"| > pipe temp3 a',

sort 1.8',
> pipe temp4 a',
console'

The file, PIPE TEMP1, reveals the problem as a user error. The line containing the
string, PERM, is not a separate line of output. It is part of the DMSEXT line which is
longer than the maximum of 80 characters the terminal can display without
wrapping on to the next line. Note that the logical record length of PIPE TEMP1 is
85.

Using the CMS Pipelines TRACE Option

To generate a record of the processing of a PIPE command, use the TRACE option.
The trace information generated shows what stage is being run and what data is
passed from one stage to the next stage.

For more information about the TRACE option, see “Debugging Pipelines” in
lz/VM: CMS Pipelines User’s Guide|

Debugging a CMS Pipelines Stall

88

When a stage in a pipeline cannot run for whatever reason, it is blocked. When all
stages are blocked, the pipeline is stalled. A stage can be blocked when it has
written a record to its output stream but the record has not been consumed. A
record is consumed when a stage reads and removes the record from its input
stream. A stream can also be blocked when it is waiting to read a record from its
input stream, but no records are available.

When a pipeline stall is detected, CMS Pipelines displays messages describing the
state of the stages when the stall occurred as well as the reason why the stall
occurred. CMS Pipelines also writes a file, PIPDUMP LISTnnnn (where nnnn is a
number), to your A-disk. The file contains a dump of CMS Pipelines control
blocks. If the problem that caused the stall is a user error, you can erase the file. If
you cannot detect the problem from the messages, it may be useful to draw a
diagram of the stages, and correlate it to the stall messages. This can help
determine between which two stages the problem exists. If you suspect that the
stall is caused by a problem in CMS Pipelines, you can provide the dump to your
IBM service representative.

z/VM V6.3 Diagnosis Guide

Debugging CMS Pipelines

Some stalls may be caused by the FANIN stage. Whenever possible, it is
recommended that you use the FANINANY stage rather than FANIN. FANIN

reads input records from a specified stream only. FANINANY reads input records
from all streams and will not cause a set of pipelines to stall. See z/VM: CM
[Pipelines Reference|for more information about the FANIN and FANINANY stages.

The CMS Pipelines TRACE option, which is described in [“Using the CMS Pipelines
[TRACE Option” on page 88 |can also be used to generate a trace to help isolate the
problem causing the stall.

Example

The following command causes a pipeline stall:

pipe Titeral xxx | a:fanin | a:
FPLDSPO29E Pipelines stalled
FPLMSGOO3I ... Issued from stage 2 of pipeline 1

FPLMSGOO1I ... Running "fanin"

FPLDSPO30I Stage is in state wait out
FPLMSGOO3I ... Issued from stage 1 of pipeline 1
FPLMSGOO1I ... Running "Titeral xxx"

FPLDSPO30I Stage is in state wait out
FPLMSGOO3I ... Issued from stage 2 of pipeline 1
FPLMSGOO1I ... Running "fanin"

Ready (-4095) ;

The pipeline stalled because there are no primary input stream records for the
FANIN stage to read.

Chapter 8. Debugging CMS Pipelines 89

90 z/VM V6.3 Diagnosis Guide

Chapter 9. Debugging the SFS Server or CRR Recovery
Server

The Coordinated Resource Recovery (CRR) facility requires a CRR recovery server.
The CRR recovery server functions reside in a Shared File System (SFS) file pool
server, so you could have the same server performing both SFS server functions
and CRR recovery server functions.

Hereafter, reference to a server, it could mean one of the following:
* A dedicated SFS file pool server
* A dedicated CRR recovery server

* Both an SFS file pool server and a CRR recovery server

For more information about SFS and CRR, see |z/VM: CMS File Pool Planning)
(Administration, and Operation]

The following sections describe the ways you can collect information for problem
diagnosis:

+ |[“Using the Console Log” on page 92

+ |[“Using Server Dumps to Diagnose Problems” on page 95

* [“Using System Trace Data to Diagnose Problems” on page 97|
* |"Using the SVCTRACE command” on page 66/

Note: The server operator does not necessarily diagnose problems, especially from
the server virtual machine. Dumps and system trace data are normally used by a
system programmer or whoever is responsible for diagnosing system problems.

Summary of Steps to Follow When a Server Abend Occurs

When a server abend occurs, you must follow these steps:
1. Collect information about the error.

* Save the console log or spooled console output from the server virtual
machine.

¢ Save and process any dumps that the server produces.
When an abend occurs in the server, either because the server issued an
abend or because a server or CMS operation caused a program exception, the
server produces a dump through the CP VMDUMP command described in

the [z/VM: CP Commands and Utilities Referencd, CP sends the dump to the
server's virtual reader.

Note: The DUMP startup parameter must have already been specified in the
server's DMSPARMS file to get a dump to the reader.

¢ Save any system trace files that contain server data.
2. Collect other types of information about system status, such as:
* The status of real and virtual devices that the server is using

¢ The system load at the time of the error on any systems using the server and
the status of each system (for example, did another system abend?)

© Copyright IBM Corp. 1991, 2013 91

Debugging SFS and CRR

* The types of applications that are using the server at the time, and any
information about them

* The physical connection configuration of the systems in use.

Using the Console Log

92

The server provides informational messages, as well as error messages, that may
help you with problem determination. To keep track of the console messages,
enter:

spool console start to userid

userid can be the user ID of the server virtual machine or another virtual machine
user ID to whom you want the server to send the console log. You may want to
add this to the server's PROFILE EXEC so a console log is always created.

To close the console log, enter:
spool console close

The log of messages received is sent to the specified user ID. Seem
{Commands and Utilities Reference|for details on the SPOOL command.

The server provides additional information at the time of an abend to help you
diagnose the problem. The console log contains information about the abend, such
as:

¢ The abend code
* The program old PSW

e The contents of the general purpose registers.

The server also attempts to determine the displacement of the module in which the
abend occurred and the displacement of the calling module.

[Figure 7 on page 93} [Figure 8 on page 94} and [Figure 9 on page 95 show some of
the messages that the server may issue in response to an abend condition.

z/VM V6.3 Diagnosis Guide

Debugging SFS and CRR

DMSITP141T Operation exception occurred at 4E3E72 in routine DMS5IF

SDS ABEND SAVEA

ADDR OFFSET

0051E0C4 00000000
0051E0D4 00000010
0051EOE4 00000020
0051EQF4 00000030
0051E104 00000040

ABTERM CODE OC1 AT

PROGRAM OLD PSW IS :

GPR 0 = 00000000
GPR 4 = 00000118
GPR 8 = 003707FC
GPR 12 = 00466A5F
FAILURE AT OFFSE
FAILURE AT OFFSE

CALLED FROM OFFSE
CALLED FROM OFFSE

STORAGE NEAR FAILU
ADDR OFFSET

004E3E50 00000000
004E3E60 00000010
004E3E70 00000020
004E3E80 00000030
004E3E90 00000040

POTENTIAL WILD BRA

BAL(R) AT OFFSE
BAL(R) AT OFFSE

ADDR OFFSET

00465ECO 00000000
00465EDO 00000010
00465EE0 00000020
00465EFO 00000030
00465F00 00000040

AB/00C1

REA :

DUMP DATA

FFEOOOC1 704E3E72 00000000 003707C8
0051E000 0051E848 00000118 00370702
00000118 00000000 003707FC 00370760
00372BEO 00465A60 00466A5F 00370760
70465EE8 004E3E70

004E3E70

FFEOOOC1 704E3E72
003707C8 0051E000 0051E848
00370702 00000118 00000000

00370760 00372BEO 00465A60
00370760 70465EE8 004E3E70

T +00058E70 IN DMSSAC PROGRAM (0048B000)

T +0007E410 IN DMS3SP 89.082

T +0002E9DO IN DMSDAC PROGRAM (00469000)

T +00000210 IN DMS3RA 89.080

RE :

DUMP DATA

00030000 OOOOFFFF 004FACBO 004DD958
00000080 00000000 00502330 00000000
00000000 10C4D4E2 F5C7D440 404040F8
F94BFOF8 F10090EC DOOC18CF 5800C7DC
58E0AQ14 58FOE130 5810F008 1E015500

NCH AT : 00465EE6

* e |...(R. *
e, &......
* ... DMS5GM 8 *
*9.08l......... G

T +0005CEE6 IN DMSDAC PROGRAM (00409000)

T +00000486 IN DMS3SP 89.082
DUMP DATA

912F5020 90744120 91375020 90784120
BB585020 907C5820 908C5820 201058F0
21D04110 906805EF 12FF4780 B4E65820
A2F041EQ 022613EE 50E02018 1FEEO6EO
50E0201C 50F02020 D207203C BB5040F0

PIDS/5684-112 RIDS/DMS3SP

L PO &o....

* 8Bl 0 *

i W..
0...... G *

ADRS/0007E410

Figure 7. Server Console Log (Operation Exception Occurred)

Chapter 9. Debugging the SFS Server or CRR Recovery Server

93

Debugging SFS and CRR

94

DMSITP141T Protection exception occurred at 4FEAFE in routine DMS5IF

SDS ABEND SAVEA

ADDR OFFSET

005390C4 00000000
005390D4 00000010
005390E4 00000020
005390F4 00000030
00539104 00000040

ABTERM CODE 0C4 AT

PROGRAM OLD PSW IS :

GPR 0 = 00000000
GPR 4 = 00000118
GPR 8 = 0038B7FC
GPR 12 = 004FEA80

REA :
DUMP DATA

FFEOOOC4 AOAFEAFE 00000000 0038B7C8
00000000 00539848 00000118 0038B702
00000118 00000000 0O38B7FC 0038B760
0038DBEO 00000000 O04FEA80 0038B8AO
0038D1A0 004FEA80

004FEAFA

FFEOOOC4 AG4FEAFE
0038B7C8 00000000 00539848
0038B702 00000118 00000000

0038B760 0038DBEO 00000000
0038B8A0 0038D1A0 004FEA80

LI) I H *

FAILURE AT OFFSET +00058AFA IN DMSSAC PROGRAM (004A6000)
FAILURE AT OFFSET +0000007A IN DMS5GM 89.065

CALLED FROM OFFSET +0005D03E IN DMSDAC PROGRAM (00424000)
CALLED FROM OFFSET +00000486 IN DMS3SP 89.065

STORAGE NEAR FAILU
ADDR OFFSET

004FEADS 00000000
O04FEAES 00000010
004FEAF8 00000020
004FEBO8 00000030
004FEB18 00000040

AB/00C4

RE :
DUMP DATA

E13047F0 C0245000 FOO0818B1 50DOBO04
50B0DOO8 98F1DO10 18DBD217 BO481000
1F225020 B1405820 B0485820 20005020
B144183A D5063000 C7824770 COA25890
30145820 901C47F0 COAE182A 58902014

PIDS/5684-112 RIDS/DMS5GM

Y TN &

* oo WNLLGee L *

o O.evvnnnn *
ADRS/00000000

z/VM V6.3 Diagnosis Guide

Figure 8. Server Console Log (Protection Exception Occurred)

Debugging SFS and CRR

DMS5FE3040E File pool server system error occurred - DMS4CI 05
SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

0051D0C4 00000000 00000000 5049528E 00000010 00495A3C *&......... b,
0051DOD4 00000010 0038C000 OO38C1EC 00391016 0000000D = Acoooeee. *
0051DOE4 00000020 00000008 00000012 00000001 00000012 * *
0051DOF4 00000030 00371340 0036FDF8 00494C90 0036FDF8 =8..<....8 =
0051D104 00000040 50495290 00500D48 * &Ll *
GPR 0 = 00000010 00495A3C 0038C000 0038C1EC
GPR 4 = 00391016 0000000D 00000008 00000012
GPR 8 = 00000001 00000012 00371340 0036FDF8
GPR 12 = 00494C90 0036FDF8 50495290 00500D48

FAILURE AT OFFSET +0000B28C IN DMSSAC PROGRAM (0048A000)
FAILURE AT OFFSET +000005FC IN DMSA4CI 89.058

CALLED FROM OFFSET +0005265A IN DMSSAC PROGRAM (0048A000)
CALLED FROM OFFSET +00000192 IN DMS4SR 89.081

DMS4SB3126E SAC termination during forward processing
LUWID = 57F5 USERID = BRAZIE
OPERATION = BULK INSERT
CATALOG-ID = 6503
PAGE-ADDRESS = 392000 PAGE-TYPE = INDEX
PAGE-NUMBER = 112A

MS/DMS3040E PIDS/5684-112 RIDS/DMS4CI PRCS/05

Figure 9. Server Console Log (File Pool Server System Error Occurred)

Using Server Dumps to Diagnose Problems

You can use the Dump Viewing Facility to collect and diagnose problem data for
the server virtual machine. The console listing, as described in|“Using the Consold
[Log” on page 92| may help you diagnose problems without using dumps.

The steps involved in using dumps to diagnose problems are:
1. Create the server dump

2. Process the server dump

3. Diagnose the server dump

4. Print the server dump.

Creating a Server Dump

The server virtual machine creates its own dumps. The dumps go to the reader of
the server virtual machine. (The DUMP startup parameter must have already been
specified in the server's DMSPARMS file to get a dump to the reader.) Because the
server virtual machine is not set up to process dumps, you need to transfer the
dump file to the appropriate virtual machine.

If the server virtual machine cannot create the dump, you can use the VMDUMP
command. The VMDUMP command dumps virtual storage that z/VM creates for
the virtual machine user, in this case for the server. If you enter the following CP
command:

vmdump 0-end system format sfs

Chapter 9. Debugging the SFS Server or CRR Recovery Server 95

Debugging SFS and CRR

96

the dump goes to the virtual machine specified by the DUMP operand of the
SYSTEM_USERIDS statement in the system configuration file. Do not use the
reserved names ATSCABI or ATSCAB? for the dump ID of VMDUMP. See
[CP Commands and Utilities Reference|for more information on the VMDUMP
command.

Processing a Server Dump

After the server virtual machine creates a dump, load the dump onto disk. To load
the dump, enter:

dumpload
The default map file is SFSDVF MAP.

After you have loaded the dump, you can use the Dump Viewing Facility to
format, process, view, and print the dump. To do this, enter:

dumpscan dumpname

When you enter the DUMPSCAN command, it checks for a server extraction
routine to update the symptom record, transmit it to the symptom record
repository, and update the dump.

See [z/VM: Dump Viewing Facility| for more information about the DUMPSCAN
command, and [z/VM: CP Commands and Utilities Reference|for more information
about the DUMPLOAD utility.

Diagnosing a Server Dump

The DUMPSCAN command uses a symptom record, which is based on problem
report information. The symptom record helps you find out why the server created
the dump. The symptom record includes:

* Information about the system environment at the time of the dump

* The symptom string that contains the following component-related symptoms:
— The error code
— The ID of the failing component

The ID of the failing module

The registers and PSW contents.

To see the symptom information, use the SYMPTOM subcommand of
DUMPSCAN.

You can use the other DUMPSCAN subcommands to examine the dump
interactively. The following sections introduce those subcommands specifically for
the server.

Formatting and Displaying Trace Records
You can scroll through the formatted output with either of the following
DUMPSCAN subcommands:

* TRACE SCROLL or TRACE SCROLLU
* SCROLL or SCROLLU.

See [z/VM: Dump Viewing Facility|for more information about the DUMPSCAN
TRACE and SCROLL subcommands.

z/VM V6.3 Diagnosis Guide

Debugging SFS and CRR

Printing a Server Dump

The PRTDUMP command of the Dump Viewing Facility prints the dump and
symptom record that DUMPSCAN processed. The output you get consists of the
following:

* A symptom record
* A dump in hexadecimal (no special formatting)
* The contents of the registers and the PSW.

See |z/VM: Dump Viewing Facility|for more information on the PRTDUMP
command.

Using System Trace Data to Diagnose Problems

While the server maintains an internal trace table within the server virtual
machine, it also writes trace entries to the system TRFILE file. You can use the
Dump Viewing Facility to format and display the trace table entries.

If you use the CP TRSOURCE command to create trace entries or the CP TRSAVE
utility to save trace entries, you can format them with the CP TRACERED utility.
You can then use DUMPSCAN to view server entries. For more information about
the DUMPSCAN command, see |z/VM: Dump Viewing Facility} For information
about the TRACERED utility and the TRSAVE command, see lz/VM: CP Commands|
tind Utilities Reference]

Setting Internal Tracing

The server ITRACE command lets you enable or disable internal tracing for the
server virtual machine. If you want to collect server trace records, enter the
following from the server virtual machine after TRSAVE is started:

itrace on

If you want to stop tracing for the server, enter:
itrace off

ITRACE traces APPC/VM communications between the server machine and CMS
users.

You may also start tracing, using ITRACE, by specifying the proper startup
parameters when the server machine is started.

To process the internal trace output, use the Dump Viewing Facility to view the
results.

A complete description of the ITRACE command is in IZ/VM: CMS File Pool|
IPlanning, Administration, and Operation}

Setting External Tracing

The server ETRACE command lets you enable or disable external tracing for the
server virtual machine. If you want to collect server trace records, enter the
following from the server virtual machine after TRSAVE is started:

etrace on

After you enter ETRACE ON, a series of prompts allow you to specify the type
and level of data to be traced. The prompts you will receive are for:

Chapter 9. Debugging the SFS Server or CRR Recovery Server 97

Debugging SFS and CRR

* Which user ID processing will be traced. You can specify a single user ID or all
user IDs with an asterisk (*).

* What type of server processing will be traced. In response to this prompt, you
can specify SAC, DAC, or both to indicate the type of server processing.

* Server tracing of the subcomponents and the trace level desired.
A 0 may be entered as a response to any prompt to cancel the ETRACE command.

If you want to stop tracing for the server machine enter:
etrace off

You may also start tracing with the ETRACE command by specifying the proper
startup parameters when the server machine is started.

To process the external trace output, use the Dump Viewing Facility to view the
results.

When you set external tracing on, certain internal server trace records are written
externally to a spool file. A complete description of the ETRACE command is in
kz/VM: CMS File Pool Planning, Administration, and Operation)

Other Diagnostic Facilities

There are other diagnostic aids that may be useful when working with IBM
support personnel for diagnosing SFS server errors. These are distributed on an “as
is” basis to be installed as a sample on the MAINT 193 disk. These include:

SFSDOT
A set of SFS operator commands that may be useful when attempting to
diagnose problems.

LCTRACE
A facility to trace interactions between a user machine and the Shared File
System (SFS). LCTRACE is invoked from a user machine's CMS session.

Note that not all of the output formats are documented, as these are designed for
IBM System Support personnel use.

98 z/VM V6.3 Diagnosis Guide

Chapter 10. Debugging GCS

The Group Control System (GCS) is a multitasking operating system and is a
component with z/VM. Only XA or XC virtual machines may use GCS.

XA and XC virtual machines run with the full capabilities of z/VM. Either 24-bit
or 31-bit addressing can be used (thus allowing addresses below and above 16
MB), as well as the more efficient I/O using the Channel Subsystem.

While running programs on the Group Control System (GCS), you can encounter
the following types of problems:

* Loops

* Abends

* Incorrect results

+ Disabled wait states. *

To help you deal with these problems, GCS provides:
+ |“Internal Tracing Facilities”|

+ |“External Tracing Facilities” on page 117

* [“Dumping Facilities” on page 123

+ |“Interactive Debugging Support” on page 124)

Internal Tracing Facilities

The GCS supervisor maintains a wraparound trace table that serves:

 Each virtual machine individually in a group if the trace table is placed in the
virtual machine's private storage

 All virtual machines collectively in a group if the trace table is placed in
common storage.

The trace table is placed in private storage by default unless common storage is
specified when the GROUP EXEC is run at build time. When building your GCS
configuration file, you specify how big you want this table to be. The minimum
you can choose is 4 KB; the maximum depends upon how much common storage
you have available to use if you place the trace table in common storage. If you
don't set a size limit, GCS gives you a default size of 16 KB. See z/VM: Installation
Guide for more information about how to load, build, and save GCS.

The trace table contains information about the following supervisor events:
 Task dispatches

* External interrupts

* 1/0 interrupts

* Program interrupts

* SVC interrupts

* 1/0 requests (SSCH, DIAGNOSE, HSCH, TSCH, which are called by the
supervisor)

* IUCV signal system service detail entries
* SVC GETMAIN storage requests

3. Outlined in |Chapter 1, “Introduction to Debugging,” on page 1]

© Copyright IBM Corp. 1991, 2013 99

Debugging GCS

* SVC FREEMAIN storage requests

* APPC/VM synchronous events

* Branch entry FREEMAIN storage requests
* Branch entry GETMAIN storage requests
* Service Point (SP) trace entries.

The tracing of supervisor events is activated as soon as your virtual machine joins
a group. You can trace data from any of your GCS programs (GTRACE events) by
entering the ITRACE command followed by the GTRACE macro. Service Point (SP)
trace entries are activated only if you enter ITRACE SP.

Using the ITRACE Command and GTRACE Macro

To begin tracing data in a virtual machine, you must enter from the console the
ITRACE command with the GTRACE option. Then the GCS application program
you want to trace must call the GTRACE macro. The GTRACE macro cannot begin
tracing unless you first enter the ITRACE command.

You can enter the ITRACE command for:
¢ Individual virtual machines
* Entire virtual machine groups.

Any virtual machine operator who enters it on behalf of the whole group (ITRACE
GROUP) must have an authorized user ID.

For more information about the ITRACE command and the GTRACE macro, see
tz/VM: Group Control Systerm

Note: ITRACE of GTRACE records will only trace GTRACE records that are less
than or equal to 256 bytes. GTRACE records that are greater than 256 bytes and up
to 8k can only be traced as external trace records.

Formats of Internal Trace Entries

Internal trace entries can be generated by applications from the GTRACE macro
and by the GCS supervisor.

GCS trace entries consist of a common 16-byte header followed by event-specific
data of up to 264 bytes.

Header Data

16 16 to 264

Note: In the following diagrams, reserved fields are indicated by the word Reserved' or by
dashes (- -).

Trace Header Format
The 16-byte header looks like this:

100 z/VM V6.3 Diagnosis Guide

Debugging GCS

Header Data
;I,— 'EI' Length | Machine - - Time-Of-Day
p |V ID Clock
e | C
1 1 2 2 2 8
Type
shows the type of trace entry:
Hex Code
Trace Entry Type

01 Dispatcher

02 External interrupt

03 170 interrupt

04 Program interrupt

05 SVC interrupt

06 I/0O request

07 IUCV signal system service details

08 SVC GETMAIN request

09 SVC FREEMAIN request

0A GETMAIN request through a branch entry

0B FREEMAIN request through a branch entry

0C APPC/VM synchronous event entry

OE GTRACE macro data.

TEVC (trace entry verification code)
keeps track of every time the table wraps around. The first set of entries will
have a TEVC of X'00'. Each time the table wraps around, this number increases
by 1 until it reaches X'FF'. After that, it recycles to X'00'.

By looking at this number, you will be able to identify entries left over from
the previous wraparound. This could be important, for example, if the GCS
supervisor secures a trace table slot and then gets interrupted by CP before
storing a new entry there. That slot would remain reserved, but unused, by the
interrupted machine. Other machines in the group, when dispatched by CP,
would create trace table entries in slots following it.

Length

contains the length of the whole entry, including this header. This length does
not include the space that follows GTRACE entries which aligns the next trace
table entry on a 32-byte boundary.

Machine ID
identifies the virtual machine associated with this entry. When the trace table is

Chapter 10. Debugging GCS 101

Debugging GCS

located in common storage, there is a single trace table for the entire GCS
group. It is important that you have the proper virtual machine identification.

Time-0f-Day Clock

indicates what time this entry was created in time-of-day format.

Trace Data Format
The data portion of trace entries can have any of the following formats:

» |“Dispatcher” on page 103| (type X'01')

» |“External Interrupt” on page 104 (type X'02')

* [“I/O Interrupt” on page 106|(type X'03")

* |"Program Interrupt” on page 107 (type X'04")

* |“SVC Interrupt” on page 108| (type X'05')

* ["SIO” on page 109 (type X'06')

* ["IUCV Signal System Service” on page 110 (type X'07")
+ ["GETMAIN via SVC” on page 111 (type X'08')

* |“FREEMAIN via SVC” on page 112 (type X'09")

* [“Branch Entry GETMAIN” on page 113 (type X'0A")

+ |“Branch Entry FREEMAIN” on page 114] (type X'0B')

* [“APPC/VM Synchronous Event” on page 115| (type X'0C')
* ["GTRACE” on page 116 (typeX'0E')

102 z/VM V6.3 Diagnosis Guide

Debugging GCS

Dispatcher: Type X'01'

Header Data
Task
Tlagk o Block Virtual PSW
Address
2 2 4 8
Task ID

identifies the task being traced.

Task Block Address
contains the address of a task control block for the task being dispatched.

Virtual PSW
contains the virtual PSW being dispatched.

Chapter 10. Debugging GCS 103

Debugging GCS

External Interrupt: Type X'02'

Header Data
Inter - - Interrupt APPC/VM
Code Data Data Reserved

2 2 4 4 4
External Old PSW Reserved
8 8
Reserved
16

Inter Code
contains the External Interruption Code.

Interrupt Data
contains a value that depends on the type of external interrupt.

 For a timer interrupt (code X'1004') it contains a pointer to the timer queue
element.

¢ For an IUCV or APPC/VM interrupt (code X'4000') it contains a:
- 2-byte IPPATHID
- 1-byte IPFLAGS1
- 1-byte IPTYPE.

* For all other types of external interrupts this is a reserved field.

APPC/VM Data

contains APPC/VM data.

* For an APPC/VM interrupt (code X'4000" with an IPTYPE of X'81', X'82/,
X'83', X'87', X'88', or X'89"), it contains a:
- 2-byte IPCODE.

- 1-byte IPWHATRC—for a connect pending (type X'81') interrupt, this byte
contains the IPFLAGS2 field.

- 1-byte IPSENDOP.
* For all other types of external interrupts this is a reserved field.

104 z/VM V63 Diagnosis Guide

Debugging GCS

External 01d PSW
contains the external old PSW. If an IUCV poll (rather than an external
interrupt) generates this entry, the external old PSW contains zeros (except for
the interrupt code).

Chapter 10. Debugging GCS 105

Debugging GCS

I/O Interrupt: Type X'03'

Header Data
Device -
Address Status
2 2 12
1/0 Old PSW Reserved
8 8
Reserved
16

Device Address

contains the device number (2 bytes) of the interrupting device.

Status

contains the subchannel status word (SCSW, 12 bytes).

I/0 01d PSW

contains the I/O old PSW (8 bytes).

106 z/VM V6.3 Diagnosis Guide

Debugging GCS

Program Interrupt: Type X'04'

Header Data
Task Inter !
D Code IE: Reserved Program Old PSW
2 2 1 3 8
Task ID
identifies the task being traced.
Inter Code
contains the Program Interruption Code.
ILC

contains the Instruction Length Code.

Program 01d PSW
contains the program old PSW.

Chapter 10. Debugging GCS 107

Debugging GCS

SVC Interrupt: Type X'05'

Header Data
Task S
\Y; Flags - - SVC Old PSW
ID
C
2 1 1 2 2 8
Register1 Register0 Reserved
4 4 8
Command
16
Task ID
identifies the task being traced.
SvC

is the number of the SVC entered by the invoker (1 byte).

Flags
is a reserved field for all but two SVCs.

For SVC 203, it contains the flag and code parameter.

For a DOS SVC, the leftmost bit of this field is set to one, and the rest of

the 2 bytes is reserved.

SVC 01d PSW
contains the SVC old PSW (8 bytes) for all SVCs.

Register 1
contains the contents of register 1 for all SVCs.

Register 0
contains the contents of register 0 for all SVCs.

Command
contains the first 16 bytes of the command for an SVC 202.

108 z/VM V6.3 Diagnosis Guide

SIO: Type X'06'

Debugging GCS

Header Data
F
Task Device | Instruction
ID Address Reserved cC a) Address
g
2 2 4 1 1 2 4
Task ID

identifies the task being traced.

Device Address
contains the virtual address of the device to which a Start Subchannel (SSCH),
Test Subchannel (TSCH), or Halt Subchannel (HSCH) command has been
issued. For TSCH, this is the virtual channel address.

CC contains the condition code from Start Subchannel operation. For GENIO
START, it contains the condition code returned by the SSCH instruction. For
GENIO STARTR, it contains the condition code returned by the DIAGNOSE

code X'98' SSCH subfunction.

Flag

indicates a GENIO START or START function has been issued and that the CC
field contains a valid condition code.

Instruction Address
contains the address of an I/O instruction or a DIAGNOSE.

Chapter 10. Debugging GCS 109

Debugging GCS

IUCV Signal System Service: Type X'07'

Header Data
Path - - Target _
ID Class Parameter List Data

Path ID
identifies a 2-byte IUCV path.

Target Class
identifies an IUCV target class containing the interrupt source's signal ID and
type of signal sent.

Parameter List Data
contains IUCV parameter list data.

110 z/VM V63 Diagnosis Guide

Debugging GCS

GETMAIN via SVC: Type X'08'

Header Data
S | K
Task Storage Invoker's

1D g 3 Address Length Address

2 1 1 4 4 4
Task ID

identifies the task being traced.
Sub

identifies the subpool of storage being requested. It contains zeros when:
¢ An SVC 4 fails because of an incorrect parameter list address

* The GETMAIN fails because of an incorrect mode byte

* The requested subpool was zero

Key
contains the following information:

Bits Description

0-1 contains LOC or position in storage where:
01 is below the line.
10 is resident storage.
11 is above the line.
2 Unused
3-6 contains the key of storage being obtained. It contains zeros when:

* An SVC 4 fails because of an incorrect parameter list address.
¢ The GETMAIN fails because of an incorrect mode byte.
¢ If either the length or the subpool is incorrect.
7 contains the fetch-protection signal. The rightmost bit of this field

serves as a fetch-protection signal. If the subpool of storage you
request is not fetch-protected, this bit is 0 (zero).

Storage Address
contains the address of storage obtained. If the GETMAIN failed, it contains
Zeros.

Length
contains the length of the storage requested. It contains zeros when:
* An SVC 4 fails because of an incorrect parameter list address.
¢ The GETMAIN fails because of an incorrect mode byte.

Invoker's Address
contains the address that follows the invoker's SVC.

Chapter 10. Debugging GCS 111

Debugging GCS

FREEMAIN via SVC: Type X'09'

Header Data
Task S) Storage Lenath Invoker's
ID E Address 9 Address
2 11 4 4 4
Task ID
identifies the task being traced.
Sub

identifies the subpool of storage being released. If the FREEMAIN fails, it
contains the subpool associated with the FREEMAIN.
It contains zeros when:
* An SVC 5 is entered with an incorrect parameter list address
* An unsupported MVS parameter is specified on the FREEMAIN macro
* An incorrect mode byte is encountered
* The requested subpool was zero.

Storage Address
contains the address of storage being released. If the FREEMAIN fails, it
contains the storage address passed to FREEMAIN.
It contains zeros for the following failures:
* An SVC 5 is entered with an incorrect parameter list address
* An unsupported MVS parameter is specified on the FREEMAIN macro
* An incorrect mode byte is encountered.

Length
contains the length of the storage released. If the FREEMAIN fails, it contains
the length passed to FREEMAIN.
It contains zeros for the following failures:
¢ An SVC 5 is entered with an incorrect parameter list address
* An unsupported MVS parameter is specified on the FREEMAIN macro
* An incorrect mode byte is encountered.

Invoker's Address
contains the address that follows the invoker's SVC.

112 z/VM V63 Diagnosis Guide

Debugging GCS

Branch Entry GETMAIN: Type X'0A'

Header Data
Task S K Storage Length Invoker's
ID u e Address Address
b |y
2 1 1 4 4 4
Task ID
identifies the task being traced.
Sub

identifies the subpool specified in the GETMAIN request.

Key
contains the following information:

Bits Description

0-1 contains LOC or position in storage where:
01 is below the line.
10 is resident storage.
11 is above the line.
2 Unused
3-6 contains the key of storage being obtained. It contains zeros when:

* An SVC 4 fails because of an incorrect parameter list address.
* The GETMAIN fails because of an incorrect mode byte.
* If either the length or the subpool is incorrect.
7 contains the fetch-protection signal. The rightmost bit of this field

serves as a fetch-protection signal. If the subpool of storage you
request is not fetch-protected, this bit is 0 (zero).

Storage Address
contains the address of storage obtained. If the GETMAIN failed, it contains
Zeros.

Length
contains the length of the storage requested.

Invoker's Address
contains the address following the invoker's GETMAIN call.

Chapter 10. Debugging GCS 113

Debugging GCS

Branch Entry FREEMAIN: Type X'0B'

Header Data
Task S) Storage Lenath Invoker's
ID E Address 9 Address
2 11 4 4 4
Task ID
identifies the task being traced.
Sub

identifies the subpool specified in the FREEMAIN request.

Storage Address
contains the address of storage being released. If the FREEMAIN fails, it
contains the storage address passed to FREEMAIN.

Length
contains the length of the storage released. If the FREEMAIN fails, it contains
the length passed to FREEMAIN.

Invoker's Address
contains the address following the invoker's FREEMAIN call.

114 z/vM V63 Diagnosis Guide

Debugging GCS

APPC/VM Synchronous Event: Type X'0C'

Header Data
Path Data APPC/VM Reserved
Data
4 4 8
Path Data
contains a:

s 2-byte IPPATHID

* 1-byte IPFLAGS1

¢ 1-byte IPTYPE.
APPC/VM Data

contains a:

¢ 2-byte IPCODE

* 1-byte IPWHATRC-For a connect pending (type X'81') interrupt, this byte
contains the IPFLAGS2 field

* 1-byte IPSENDOP.

Chapter 10. Debugging GCS 115

Debugging GCS

GTRACE: Type X'0E'

Header Data
—— ;(,\ -
Machine Task | AID | FID EID Reserved Appl Data
ID 1D
/¢
2 2 1 1 2 8 1to 256
Machine ID

identifies the virtual machine associated with this entry. When the trace table is
located in common storage, there is a single trace table for the entire GCS
group. It is important that you have the proper virtual machine identification.
This ID is the same data that is in the header.

Task ID
identifies the task being traced.

AID
indicates this is a data record. It always contains X'FF'.

FID (format ID)
identifies the formatting module that handles this entry.

EID
contains information from the GTRACE macro's ID parameter.

Appl Data
is up to 8192 bytes of data provided by the application. If internal tracing is
being used, then the maximum is 256 bytes.

Service Point (SP) Trace Entries
The SP trace entries appear as GTRACE records in the trace table with the
following EIDs and application data:

X'E400' Branch Entry to WAIT Data=
Registerl (4 bytes)
Register14 (4 bytes)
X'E401' Branch Entry to SCHEDEX Data=
The SCHEDEX Data Area
(85 bytes)
X'E402' Branch Entry to IUCVCOM Data=
The TUCVCOM parameter list
(40 bytes)
X'E404' Branch Entry to VALIDATE Data=

Register0 (4 bytes
Registerl (4 bytes
Register2 (4 bytes

)
)
)
Register14 (4 bytes)

116 z/VM V63 Diagnosis Guide

Debugging GCS

X'E405' Branch Entry to POST Data=
Registerl (4 bytes)
Register14 (4 bytes)

See the ITRACE command in z/VM: Group Control System for more information on
SP trace entries.

External Tracing Facilities

You can collect trace data in the system trace files for later formatting and viewing.
This requires entering the following commands:

1. The TRSOURCE and TRSAVE commands
2. The ETRACE command.

See |/VM: CP Commands and Utilities Referencd for more information on the
TRSOURCE and TRSAVE commands; see [z/VM: Group Control System|for more
information on the ETRACE command.

The users who enter the TRSOURCE command must have a Class C privilege user
ID. After the TRSOURCE commands have been entered, this machine can enter the
ETRACE command to commence tracing for its own application or ETRACE
GROUP for tracing the entire group (if it's an authorized machine). Use ETRACE
to specify which of the following events should be traced and recorded in the
spool file:

¢ Task dispatches

* External interrupts

* 1/0 interrupts

¢ Program interrupts

* SVC interrupts

* 1/0 requests (SIO and Diagnose)

* IUCV signal system service details
* APPC/VM synchronous events

* GETMAIN requests

* FREEMAIN requests

* User trace data generated using the GTRACE macro.

The CP TRACERED utility provides the facility with processing of trace data
defined by the TRSOURCE command in system trace files. TRSOURCE defines
what is going to be traced. TRSAVE specifies where data from traces defined by
the TRSOURCE command are to be saved. CP and virtual machine data can be
merged to produce a consolidated output file in chronological sequence.

See ['I/O Debugging” on page 164| for guidance information on setting up tracing
activity for CP, GCS, VSCS, and VTAM.

Using the TRSOURCE Command

TRSOURCE controls and displays CP data and I/O tracing activity. It supports
definitions and control of 1/O, data, and guest tracing. It controls and displays the
status of guest tracing.

Chapter 10. Debugging GCS 117

Debugging GCS

When you use the BLOCK option of TRSOURCE, trace data to be recorded is
buffered by GCS. In this mode, if the GCS supervisor fails or a system reset occurs,
the data remaining in the trace buffer cannot be sent to CP and is not recorded by
CP. However, if a dump is available, you can view the trace data remaining in the
buffer by finding the pointer to it in a system control block. See
[External Trace Buffer.”|

When you use the EVENT option of TRSOURCE, each trace record is sent directly
to CP with no buffering of the trace data. When the trace is running in EVENT
mode, there is no loss of data in the event the virtual machine loses control from
CP, but the performance gain of BLOCK mode is lost.

Locating the External Trace Buffer
You can locate the external trace buffer by doing the following:

Locate the SI extension (SIE) address in the NUCON at displacement X'5C4'
Locate the TAB address in the SIE at displacement X'AQ'
Locate the external trace buffer address in the TAB at displacement X'C'.

Format of the External Trace Buffer
The format of the external trace buffer is:

Buffer Length CP Header | GCS Header User Data
Header

Trace Record
Repeats until buffer is full

The layout of the buffer header is:

0 | TRBFBLEN | 0000000000 | TRBFHLEN | 0000000000

8 | TRBFMRG

10 | TRBFFMT

18 | DESC |000000000000000f TRBFTIME

Disp Name Length Description
(bytes)
© TRBFBLEN 2 Number of bytes filled in buffer
2 TRBFRES1 2 Reserved
4 TRBFHLEN 2 Length of buffer header W/O TRBFBLEN and TRBFRES1
6 TRBFRES2 2 Reserved
8 TRBFMRG 8 Name of merge routine
10 TRBFFMT 8 Name of format routine
18 TRBFDESC 1 Block descriptor set by CP on call to

DIAGNOSE X'EOQ'
19 TRBFRES3 Reserved
1C TRBFTIME 4 Time zone differential

w

The layout of the CP header is:

CPHTYPE CPHHLEN CPHCODE CPHLTH Iy

118 z/VM V63 Diagnosis Guide

Debugging GCS

Disp Name Length Description
(bytes)

0 CPHTYPE 1 The type of CP header (3D)
1 CPHHLEN 1 The length of the CP header (in doublewords)
(Headers must end on doubleword boundary)
CPHCODE 2 Individualizing code
CPHRESER 1 Reserved byte
3 CPHINDIV 1 GCS individualizing code byte
(The individualizing code values are the same
as the values in the TYPE field in HEADER1 of
the internal trace records.)
See ['Formats of Internal Trace Entries" on page 100.|
4 CPHLTH 2 Length of header + Tength of data
(This Tength includes the CPH DSECT and
the user data. It does not include any
round up of the record to a 16 byte
(DWORD) boundary.)
2 Reserved

N N

The layout of the GCS header is:

0 8 16

Supervisor record TOD |USER
TIME | ID
0 8
GTRACE record USER
ID

The layout of the user data is the same as for internal tracing entries. (See
[Tracing Facilities” on page 99).

Using the TRSAVE Command

TRSAVE specifies where data is to be saved. Data from traces defined by
TRSOURCE may be saved in a system trace file.

A TRSOURCE/TRSAVE Command Example
The following is an example of a guest trace invoked by using the TRSOURCE and
TRSAVE commands:

trsource id gl type gt for rscs
trsave id gl size 40 keep 3
trsource enable id gl

trsource disable id gl
trsource drop id gl

Note: Between the commands TRSOURCE ENABLE ID G1 and TRSOURCE
DISABLE ID G1 in the above example, all tracing from the RSCS virtual machine is
collected in a TRFILE with file name GI.

Using the CP TRACERED Utility

The CP TRACERED utility reads and formats trace data. All files to be processed
must have been created under a valid current release. A total of five system trace
files can be merged. Only one CP system trace table file or tape may be included.
Therefore, you may specify one of the following:

* One CP system trace table file with up to four TRSOURCE trace files
* One CP tape with up to four TRSOURCE trace files
* Up to five TRSOURCE trace files.

Chapter 10. Debugging GCS 119

Debugging GCS

A TRACERED Utility Example

The following is an example of CP data merged with virtual machine data:

If you entered the following:
tracered 0003 0004 cms cpvm out a (all hex

you might receive the following output:

---------------------------- 04/06/95 16:54:06 =---===mmmmmmmmmmmmmommen

CPU TOD CLOCK CODE ##wxxxksxxx TRACE ENTRY CONTENTS ssssssossx

---------------------------- 04/06/95 16:54:32 ==-mmmmmmmmmmmmmommmoomme

33D17D82A640 A3888540 8481A381 40A396C2 C540D9C5 C3D6DIC4 SPID 0003
C5C4C9E2 40F3F240 EA4E2C5D9

---------------------------- 04/06/95 16:56:00 =---====-mmmmmmmmmmmommen

33D452F96400 A3888540 8481A381 40A396C2 C540D9C5 C3D6D9IC4 SPID 0003
C5C4C9E2 40F3F240 EAE2C5D9

---------------------------- 04/06/95 16:56:19 ==--mmmmmmmmmmcmmmoomoee

0000 33E68389D640 0600 4C4C4C4C 00000026 008B1008 OOFADOOO 80522988 SPID 0004
0000 33E6838C9480 3300 D2C34040 004D3720 0OFADOOO OOFFD580 805229C8 SPID 0004
0000 33E6838DA260 2C00 00522178 OOE5E2D7 OOFFB180 8050570E 8052219C SPID 0004
0000 33E6838EA840 0700 4C4C4C4C 00000001 0086EOO8 OOFADOOO 8050572E SPID 0004
0000 33E683913620 2C00 00000004 00D8C3D8 OOFFDESO 805036BC 805055A0 SPID 0004
0000 33E683926000 2200 0086FO08 80001010 OOFADOOO OOFADOOO 0031FCB8 SPID 0004

Using the QUERY TRFILES Command

Use the QUERY TRFILES command to display information about system trace files
that you own. This includes the spool ID, file name, and time of creation.

General Trace Information

You can find general information about external tracing in z/VM: Group Controll

Formatting and Displaying External Trace Records

The external trace file contains two different entries produced by GCS virtual
machines for:

* GCS supervisor records
¢ GTRACE records.

The format for supervisor records is as follows:

CP Header Userid Data
8 16
CP Header

contains an 8-byte header appended by CP when it gets the record.

120 z/VM V6.3 Diagnosis Guide

Debugging GCS

User ID
identifies the virtual machine that the entry belongs to.

Data
contains the data portion of the event's internal trace entry. *

The format for GTRACE records is as follows:

L JlarF E
CP Header Userid e | o |!]! TOD Clock | Data
n D|D D
2 0
8 2 2 11 8 2 Variable
GTF Header
CP Header
contains an 8-byte header appended by CP when it gets the record.
User ID
identifies the virtual machine that the entry belongs to.
Len
contains the length of the entry, including the GTF header.
0000
is a reserved field in the GTF header.
AID

contains X'FF', indicating that this is a data record.

FID (Format ID)
identifies the formatting module used for this record.

TOD Clock
indicates when the record was built, in time-of-day format.

EID
contains information from the GTRACE macro's ID parameter.

Data
contains the internal trace entry without the internal header (up to 8k).

The main reason you create an external spool file with TRSOURCE is to print out
or interactively display your trace information. The TRACERED utility ° lets you
do that by formatting trace entries in your external spool file and then printing
your external file or creating a CMS file. The TRACERED utility handles the
formatting of supervisor and GTRACE entries, sending both to a common format
routine (GCTYTD). The TRACERED utility formats supervisor records and GTF
header information. However, the applications being traced by means of the
GTRACE facility have to supply their own GTRACE formatting modules. If they
do not, their trace entries for the data portions of the records are printed
unformatted, in hexadecimal.

4. Internal trace entry formats are described in |“Formats of Internal Trace Entries” on page 100

5. TRACERED is a CP data reduction utility that works on the system trace file created by TRSOURCE. For more information on
TRACERED, see |/VM: CP Commands and Utilities Reference]

Chapter 10. Debugging GCS 121

Debugging GCS

122

As TRACERED goes through the spool file, it examines each entry one by one.
Trace entries, which were recorded by GCS using a “MC 1, 10” instruction, are
passed to a GCS module GCTYTD for formatting.

For supervisor records, GCTYTD calls a GCS-supplied formatting routine named
GCTYTS to format it. However, for GTRACE records, GCTYTD uses GCS-supplied
formatting routines to format the GTF header part of the record. GCTYTD also
looks for another formatting routine, one supplied by the traced application, to
finish the data portion of the record. (It uses the GTRACE record's 1-byte FID field
to locate this routine. The routine's name must be GCTYTXxx, with xx being the
2-digit FID, and it must have a file type of TEXT.)

If the GCTYTD program cannot find a user-supplied formatting routine, it prints
the entry information in hexadecimal. If the program does find a GCTYTXxx TEXT,
it calls that routine.

For information about coding user-supplied formatting routines, including register
contents at the time they are called by the GCTYTD program, see the GTRACE
Macro in [z/VM: Group Control System]

Examples of Formatted External Trace Table Entries

Here are several sample supervisor event entries as you would see them in your
external trace file.

e An entry type X'03' for an I/O interrupt:

3D 03 useridxx VM/GCS I/0 INTERRUPT
DEVICE ADDRESS = xxxx
STATUS = XXXXXXXX X X XXXXXX XX XX XXXX
OLD PSW = XX X X X X XX XXXXXXXX

* An entry type X'05' for an SVC interrupt:

3D 05 useridxx VM/GCS SUPERVISOR CALL INTERRUPT
SVC CODE = xx
TASK ID = xxxx
FUNCTION NAME = XXXXXXXX
PARM BYTES 8-15 = X'XXXXXXXXXXXXXXXX' = #XXXXXXXX*
REGISTER 1 = XXXXXXXX
REGISTER 0 = XXXXXXXX
OLD PSW = XX X X X X XX XXXXXXXX

* An entry type X'08' External Trace Table Entry by SVC GETMAIN:

3D 08 useridxx VM/GCS GETMAIN VIA SVC
TASK ID = xxxx
KEY = X XXXXXXXXXXXXXXXXXXX
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX
LOC = xxxxx

* An entry type X'09' External Trace Table Entry by SVC FREEMAIN:

z/VM V6.3 Diagnosis Guide

Debugging GCS

3D 09 useridxx VM/GCS FREEMAIN VIA SVC
TASK ID = xxxx
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX

* An entry type X'0A" External Trace Entry by Branch Entry GETMAIN:

3D OA useridxx VM/GCS GETMAIN VIA BRANCH ENTRY
TASK ID = xxxx
KEY = X XXXXXXXXXXXXXXXXXXX
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX
LOC = xxxxx

* An entry type X'0B' External Trace Entry by Branch Entry FREEMAIN:

3D 0B useridxx VM/GCS FREEMAIN VIA BRANCH ENTRY
TASK ID = xxxx
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX

* An entry type X'0E' for a GTRACE entry:

3D OE useridxx VM/GCS USER REQUESTED GTRACE
TIME OF DAY CLOCK = XXXXXXXXXXXXXXXX
LENGTH OF GTF HEADER AND TRACE DATA = Xxxxx
FORMAT ROUTINE ID = xx
EVENT IDENTIFICATION = xxxx
[formatted GTRACE data appears here. . . .]

Dumping Facilities

The following describes the common dump receiver and rules of authorization.

The Common Dump Receiver

To let you dump out the contents of virtual storage and see where problems have
occurred, GCS must provide a way around its own safeguard mechanisms.
Otherwise, your GCS dumps would be largely incomplete.

Rules of Authorization

If a dump is directed to an authorized user, all of the requested storage is dumped,
including the saved segments. If the dump is directed to an unauthorized user,
only the storage with a key of 14 and nonfetch-protected storage is to be dumped.

Chapter 10. Debugging GCS 123

Debugging GCS

If you direct the dump to yourself or to another unauthorized user ID, you cannot
dump any fetch-protected areas or storage with a key other than 14. Unauthorized
dump receivers can accept only key-14 and other nonfetch-protected storage.

You can solve this problem by singling out one authorized virtual machine as your
common dump receiver. At build time, when creating your GCS configuration file,
you are prompted to name this common dump receiver. Choose any authorized
user ID, perhaps the same user ID that you specify as your recovery machine. Be
sure you list it on the GROUP EXEC's screen of authorized GCS user IDs. If you
name a common dump receiver, GCS's dump functions, described in
IGCS Dumps” on page 126 |automatically send their output to it. ®

Interactive Debugging Support

The following describes using authorized CP commands for debugging support.

Using Authorized Control Program (CP) Commands

Authorized user IDs can have access to the following CP debugging commands:
* BEGIN

* DISPLAY

* STORE

« DUMP

Initially, these are Class G commands, available to all user IDs. You may want to
reclassify these commands to prevent unauthorized users from altering storage that
may effect other members of the GCS group.

For more information on controlling access to CP commands, see |z/VM: CP
(Planning and Administration|

Analyzing Dumps

After storage has been dumped, it can be:

* Read into a CMS file

* Analyzed by the receiving virtual machine under CMS with the Dump Viewing
Facility

* Dumped to tape (using spool-to-tape) and sent to an IBM support center for
analysis.

The Dump Viewing Facility uses specialized routines for formatting GCS dumps.

To use the Dump Viewing Facility successfully in processing a virtual machine
dump, the minidisks containing GCS must be accessed before processing the dump
by the Dump Viewing Facility.

Dump Viewing Facility Features for GCS Dumps

Creating a GCS module map —
the Dump Viewing Facility MAP command looks for a nucleus load map
with the default name GCSNUC MAP *. It creates a module map called

6. The exception is GDUMP, which optionally lets you choose another receiver.

124 z/VM V6.3 Diagnosis Guide

Debugging GCS

GCSDVF MAP that contains a header and a compressed version of the
load map. The Dump Viewing Facility ADDMAP command appends the
module map to a formatted dump.

Printing formatted VTAM or VSCS control blocks —
Use the Dump Viewing Facility PRIDUMP command to specify whether
you want formatted VTAM or VSCS control blocks printed in a dump.
You'll have this option for any GCS- or VMDUMP-generated dump of type
GCS or RSCSV2. First you receive a prompt asking you if you want your
dump printed using the VTAM option. If you do not pick the VTAM
option, you receive a prompt asking you if you want your dump printed
using the VSCS option. If you do not choose either option, only summary
information from the dump is printed.

Viewing the GCS dump information —
Use the Dump Viewing Facility DUMPSCAN command to format a GCS
dump and to view it, along with the appended module map, interactively.
Use the Dump Viewing Facility BLOCKDEEF utility to format control blocks
and to view them interactively. For more information, see|“Processing GCS|
Dumps with the Dump Viewing Facility” on page 132 and |z/VM: Dump|
Viewing Facility}
Using the GCS debug tools —
Additional GCS debugging tools are available and may be helpful when
diagnosing GCS problems. When run against an existing GCS dump, these
tools may help by formatting trace tables, calculating storage used by load
modules, as well as mapping storage used by particular tasks. Other useful
debugging capabilities are also included with this tools package.

The GCSDUMP tools package is shipped with z/VM version 6 release 3 on
an “as is” basis, optionally installed on the MAINT 193 disk. For more
information, see the README SAMPGCS file that comes with package on
MAINT's 193 disk.

Dumping VSAM Information

When VSAM detects certain internal logic errors, it produces a special dump,
called an IDUMP, that can help you identify those problems. To look at
information in the dump header, use the DUMPID subcommand of DUMPSCAN.
This dump header contains the following information:

SAVEAREA
VSAM IDUMP| 24-character symptom string | MM/DD/YY HH:MM:SS ADDR

VSAM IDUMP
is a dump identification message.

24-character symptom string
identifies error codes, the location of the error, and the module that detected
the error. For information on how to interpret this character string, see
VSE/VSAM Programmer’s Reference.

MM/DD/YY
is the date when VSAM detected the error.

HH:MM: SS
is the time of day when VSAM detected the error.

SAVEAREA ADDR
contains the address of the save area that shows what each register contained

Chapter 10. Debugging GCS 125

Debugging GCS

when VSAM discovered the error. Ignore the first 16 bytes of this save area,
and look for the register contents beginning at the 17th byte. You will find the
contents of all 16 registers in the following order: registers 9-15, registers 0-8.

Creating GCS Dumps

126

GCS uses the CP VMDUMP command to produce dumps of virtual machines.
Dumps are always sent to a virtual reader.

Dumps are produced several ways:

* By using the GDUMP command

e From an application using the SDUMP, SDUMPX macro or ABEND macro
* By entering the CP command, SYSTEM RESTART

* After an abnormal end of the GCS supervisor or an abnormal termination of a
program.

All GCS dumps follow the same rules for authorization. If the receiver of the
dump is not authorized, he receives only key 14 and other non-fetch-protected
storage. If the receiver is authorized, all areas of the virtual machine and any
saved segments can be dumped.

* By using the VMDUMP command.

If the receiver is authorized, all areas of the virtual machine and any saved
segments can be dumped.

The GDUMP Command

GDUMP is a GCS command. When you enter the GDUMP command, a “snapshot”
of the virtual machine's storage is taken. You can spool the dump to a common
dump receiver's virtual reader, to a specified user's virtual reader, or to the issuer's
virtual reader. You can dump specific ranges of storage by specifying it on the
GDUMP command. For further information on GDUMP and dump authorization,
see |z/VM: Group Control System

The SDUMP Macro

SDUMP is a macro that you can start during GCS processing. It takes a dump of
the GCS system and continues processing. The resulting dump contains the storage
of the issuer's virtual machine. SDUMP is spooled to a common dump receiver or
to the issuer's virtual reader. All or portions of storage may be requested when
using the SDUMP macro. A dump will not be taken if SET DUMP OFF has been
issued. For further information on SDUMP, see [z/VM: Group Control System

The SDUMPX Macro

Use the SDUMPX macro when you are running an XC virtual machine and wish to
dump part or all of a data space that you are accessing. For further information on
SDUMPX, see |z/VM: Group Control System

The ABEND DUMP Macro

Conditions can occur within a program that may force an abnormal ending (abend)
and cause the dumping of the system registers and storage. When this happens, an
abend dump is produced. In addition to the “forced abend”, a program may also
choose to generate an abend condition by issuing its own ABEND MACRO. The
dump contains the entire virtual machine as well as any discontiguous shared
segments (shared segments linked to your GCS system, but not within the bounds
of your virtual machine). GCS uses this facility just as CMS and CP do, except that

z/VM V6.3 Diagnosis Guide

Debugging GCS

the dump is spooled to the common dump receiver if one was specified at GCS
build time (in the GROUP EXEC), rather than the user's virtual reader.

Note: The DUMP operand is overridden by the SET DUMP command. SET DUMP
ON implies that the dump is always issued. SET DUMP OFF implies the dump is
not issued. If you enter SET DUMP DEFAULT, the DUMP operand from ABEND
takes preference.

For further information on abend dumps, see|Processing Abends” on page 131.|

The SYSTEM RESTART Command

GCS has the capability to dump a virtual machine's storage and any saved
segments when that virtual machine issues the CP command SYSTEM RESTART.
This is helpful when you cannot use the GDUMP command, for example, if you
have a GCS disabled loop and enter #cp system restart.

As with other GCS dumps, the resulting dump from the SYSTEM RESTART is in
VMDUMP format and is spooled to a common dump receiver. If you don't have a
common dump receiver, the data goes to the machine that issued it. A SYSTEM
RESTART dump follows the same rules of authorization as other GCS dumps,
when determining what storage to dump.

The VMDUMP Command

VMDUMP is issued in GCS in the same manner as in CMS. When you enter the
VMDUMP command, a snapshot of the system is taken. This snapshot is then
spooled to your virtual reader. For further information on the VMDUMP
command, see z/VM: CP Commands and Utilities Reference|

Preserving Common Storage

To produce a dump requested by one of these functions, GCS calls CP and requests
a dump. While it performs the dump, CP continues dispatching other machines in
the virtual machine group. This poses a problem if those members go on to change
common storage as it is being dumped.

To preserve common storage contents until the dump finishes, the GCS supervisor
acquires the common storage lock. This prevents other machines from acquiring
the lock during the dump. If all authorized machines test the common lock before
trying to change common storage, they will be effectively suspended until the
dump finishes. The only common storage that might change is that obtained by
other machines before the dump began.

If the SET DUMPLOCK OFF command was entered, the common storage lock is
not held while GCS is dumping. Other virtual machines running in the group can
then alter common storage.

Note: The common storage lock gets set on only if your common dump receiver is
an authorized GCS user ID and you are using the SDUMP and GDUMP functions.
It is possible to receive two dumps. An example of this would be if a user ran out
of storage while producing a dump. One dump would be produced as the user
dump, and the second dump would be the supervisor dump.

How to Find the GCS Virtual Machine That Created a Dump

When you process a GCS dump by the DUMPLOAD utility, the user ID of the
virtual machine where the dump was produced is not kept for use by the Dump

Chapter 10. Debugging GCS 127

Debugging GCS

Viewing Facility. Therefore, situations may arise where you have several dumps on
the minidisks and you need to know which virtual machine has created them. Use
the DUMPSCAN DISPLAY 204 subcommand to view the NUCVMID field.
NUCVMID is an 8-byte field that contains the virtual machine user ID, as specified
in the CP directory.

Using the GCS Trace Facilities

The GCS trace is a powerful tool used to help track down the source of a problem.

GCS has two tracing facilities:
* Internal trace (ITRACE)
* External trace (ETRACE).

These tracing facilities record events while GCS is running. You can specify which
events to track on the ITRACE or ETRACE commands. For information on how to
use these commands, see /VM: Group Control System]

ITRACE

The internal trace facility records specific events as they occur in the GCS system.
Internal tracing of GCS supervisor events is automatically enabled at IPL, but the
user may disable this tracing if so desired. Unauthorized users can disable events
for themselves only if these events have not been enabled for the entire group.

Locating the GCS Internal Trace Table

Because the internal trace table can be in either private or common storage, you
need to determine in which storage the active trace table is located.

If you are in interactive mode, enter the QUERY TRACETAB command. The
response you receive tells you in which storage location the trace table is now
being maintained.

If you are working from a dump:
* Use the load map to locate the address of the GCTGST.
* Locate the group flag in the GST at displacement X'14'. If the flag contains:

XIXX XXXX trace table is in private storage
XOXX XXXX trace table is in common storage.

In Private Storage
You can locate the internal trace table in private storage by doing the following:

* Locate the SI Extension (SIE) address in the NUCON at displacement X'5C4'
* Locate the private trace anchor table (TAB) address in SIE at displacement X'A('

* The TAB contains the following pointers to the internal trace table when it is in
private storage.

Displacement
Field Description

X'10' The starting address of the trace table
X'14'" The ending address of the trace table
X'18' The address of the next available trace table entry

128 z/VM V6.3 Diagnosis Guide

Debugging GCS

Following is an example for locating the trace table in private storage:

cp d 5C4.4

ROO00O5C4 00000750

Ready;

cp d 7F0.4

ROOOOO7FO 00002B28

Ready;

cp d 2B38.C

ROO002B38 OOFEOOOO OOFE4000 OOFE2BCO
Ready; ~ ~ ~

| ----Next available trace table entry address
————————————— Trace table end address
---------------------- Trace table start address

In Common Storage

You can locate the internal trace table in common storage by doing the following:

* Locate the common trace block (CTB) address in NUCON at displacement
X21C

¢ The CTB contains the following pointers to the internal trace table when it is in
common storage.

Displacement
Field Description

X'00' The starting address of the trace table
X'04' The ending address of the trace table

X'08' The address of the next available trace table entry

* If these first three fields in the CTB are zero, tracing is being done in private
storage.

Following is an example for locating the trace table in common storage:

cp d 21c.4

ROO00021c ©O83EB6O

Ready;

cp d 83eb60.C

ROO83EB6O 0083FO00 00843000 00841C60
Ready; n ~ ~

----Next available trace table entry address
————————————— Trace table end address
---------------------- Trace table start address

Locating the Last Trace Entry in Storage or in a Dump

To find the last trace entry, use the pointer to the next available trace entry. Trace
entries created by the GCS supervisor are 32 (X'20') or 64 (X'40") bytes long. Trace
entries created by the GTRACE macro have variable lengths (consisting of a fixed
32-byte area and 1 to 256 bytes of data). Trace entries which follow GTRACE
entries are aligned on a 32-byte boundary, and the space between these entries is
filled with binary zeros.

If the trace table does not contain any GTRACE entries, find the last entry by
subtracting 32 (X'20") or 64 (X'40'), depending on the type of supervisor trace entry
(see ["Formats of Internal Trace Entries” on page 100), from the pointer to the next
available trace entry. If the trace table contains GTRACE entries, you have to know
the layout of those trace entries to be able to find the last trace entry.

Chapter 10. Debugging GCS 129

Debugging GCS

130

Using the Trace Table

Each supervisor trace table entry is 32 or 64 bytes long. The first 16 bytes are the
header. The header describes what type of event is being recorded, the time of the
event, and for which virtual machine the event is being recorded. The remaining
bytes contain information unique to the recorded trace event. Trace entries created
by GTRACE macro have variable length. Trace entries which follow GTRACE
entries are aligned on a 32-byte boundary, and the space between these entries is
filled with binary zeros. For further information on trace table entries, see
[“Formats of Internal Trace Entries” on page 100

To see which events were being traced for a virtual machine in a dump, look at the
trace anchor block (TAB), as follows:

1. Locate the SI Extension (SIE) address in the NUCON at X'5C4'
2. Find the TAB address at SIE + X'AQ'.

The TAB contains the following information:

Displacement

Field Description
X'00' The address of the CTB
X'04' Flags for external tracing

Byte Field Description
Ixxx xxxx

Dispatcher
XIxx xxxx

External interrupts
xx1x xxxx

170 interrupts
xxx1 xxxx

Program interrupts
xxxx Ixxx

SVC interrupts
xxxx xIxx

1/0 requests
xxxx xx1x

Signal system service events
xxxx xxx1

GTRACE events

X'05'

Byte Field Description
Ixxx Xxxx
GETMAIN requests
XIxx xxxx
FREEMAIN requests
xx1x xxxx
APPC/VM synchronous events
xxx1 1111
Reserved
X'06' Flags for Internal Tracing

Byte Field Description
1111 11xx
Reserved

z/VM V6.3 Diagnosis Guide

Debugging GCS

xxxx xx1x

Supervisor events
xxxx xxx1

GTRACE events

When a tracing flag is on, that event is being traced for the subject virtual machine.

ETRACE

The external trace facility records specific events within a group as they occur in
the GCS system. These events are recorded in one or more system trace files by the
CP TRSOURCE command. This spool file may optionally be a wraparound file. In
order to use the ETRACE facility, a user with VM privilege class C must first enter
the CP TRSOURCE command. After the CP TRSOURCE command is completed,
any user in the group can enter ETRACE to begin tracing in their own virtual
machine, or an authorized user can start ETRACE for the entire group. The data
recorded in the system trace file is for the entire group.

You can use the CP TRACERED utility to format and display CP TRSOURCE trace
information. The formatted information can either be printed out or placed in a
CMS file.

The procedure for setting up and formatting ETRACEs using the CP TRSOURCE
command and CP TRACERED utility are found in [“External Tracing Facilities” on|
-ae 117

GTRACE

Either the ITRACE or ETRACE command must be entered prior to GTRACE if
GTRACE is to work. A GTRACE entry is a special trace entry that can be recorded
either internally or externally. It is started by the GTRACE macro, and records up
to 256 bytes of application data for an internal trace record and up to 8K for an
external trace record. For further explanation of the GTRACE macro, see
(Group Control System

Processing Abends

Problems occurring in the system may result in abend (abnormal end) processing.
When an abend occurs, an abend completion code is given, an abend work area is
filled in, and a dump is taken if DUMP is specified in the ABEND macro. Internal
abends always specify DUMP. See ["The ABEND DUMP Macro” on page 126 for
information on the precedence of SET DUMP.

Abend completion codes give the user some idea of why the error occurred and
what part of the system may be responsible for the problem. These codes are
explained in [z/VM: CP Messages and Codes

The abend dump contains information that enables the problem to be tracked
further. Using the Dump Viewing Facility REGS command, the contents of the
registers at the time the abend occurred can be displayed. The internal trace table
and system control blocks can also be displayed. They aid in problem
determination and debugging.

The abend work area is used during abend processing to save information about
the system at the time of the abend. It contains information such as the registers,
the PSW, and the pointer to the next available trace table entry at the time abend
occurred. The abend work area address is located at offset X'298' in NUCON.

Chapter 10. Debugging GCS 131

Debugging GCS

The Abend Work Area

The abend work area is used during abend processing to save information about
the system at the time of the abend.

The abend work area contains the following information:

* The general purpose registers and access registers at the time of error
¢ The PSW at the time of error

* An abend completion code

* A reason code (if applicable).

It also contains the address of the next available trace table entry at the time the
abend occurred.

The trace table entries before this address show the events that preceded the error.

Note: It is possible that an abend can be issued while another abend is being
processed. In this case, an abend recursion message is issued.

The recursive abend appears in the trace table. The trace table has recorded the
events for both abends.

The abend work area contains information from the original abend, and only the
original abend state block (STBLK) (type SVC) remains on the state block chain
(see [“State Block” on page 136|for information about state blocks).

For abends that result from a program check, the abend work area contains the
registers and PSW at the time of the program check.

The field NUCABW in the NUCON (at displacement X298") points to the abend
work area.

The abend work area contains the following important fields:

Displacement
Field Description

X'00' to X'3F'

Registers at the time of failure (0 to 15)
X'40' PSW at the time of failure
X'48' Abend code at the time of failure (full word)
X'4C' Reason code at the time of failure (full word)
X'D8' Trace pointer at abend time (full word)
X'DC' to X'11B'

Access Registers at the time of failure (0 to 15)

Program Checks

When a program check occurs, an abend results. The abend work area contains the
registers and PSW at the time of the program check.

Processing GCS Dumps with the Dump Viewing Facility

The Dump Viewing Facility is a facility that lets you view VM dumps. You should
be familiar with the facility and how it works before using the Dump Viewing
Facility for GCS dumps.

132 z/VM V6.3 Diagnosis Guide

Debugging GCS

All dumps taken in GCS are in VMDUMP format and can be viewed using the
Dump Viewing Facility.

The Dump Viewing Facility component of z/VM has some DUMPSCAN
subcommands you can use to display certain areas of a GCS dump. You must have
the GCS nucleus load map in order to use the DUMPSCAN subcommands that are
relevant for GCS dumps.

These DUMPSCAN subcommands are:

* DUMPID—displays the dump identifier specified in the SDUMP or SDUMPX
commands

e IUCV—displays the entire IUCV path table

¢ TACTIVE—displays information about active programs on a specified task

* TLOADL—displays the load list for a specified task

* TSAB—displays the task storage anchor block for a specified task

¢ VMLOADL—displays information about all programs loaded in virtual storage.

You can use other Dump Viewing Facility commands with a GCS dump to aid in
debugging. Any Dump Viewing Facility command or subcommand that is valid for
VM dumps can help with a GCS dump. The PRTDUMP command and the
DUMPSCAN subcommands of CHAIN, DISPLAY, and LOCATE are most helpful
when debugging with the Dump Viewing Facility. For more information on these
commands, see [z/VM: Dump Viewing Facility}

Information Used by the Dump Viewing Facility

The Dump Viewing Facility uses general purpose control blocks.

For more information on abend work areas, see [“The Abend Work Area” on page|
Program management control blocks are displayed by DUMPSCAN
subcommands. Those fields are:

¢ From the virtual machine load list (displayed by the VMLOADL subcommand)
— The major NUCCBLK address
— The module name (major NUCCBLK)
— The entry point address (major NUCCBLK)
— The module size (major NUCCBLK)
— The module load address (major NUCCBLK)
— The minor NUCCBLK address
— The entry point name (minor NUCCBLK) and
— The type of minor NUCCBLK (ALIAS or IDENTIFY).

¢ From the task load list (displayed by the TLOADL subcommand)
— The task ID

The task block address

The load block address

— The module name and

— The load count.

For more information on program management, see ['Program Management” on|

Task management control blocks are displayed by the DUMPSCAN TACTIVE
subcommand. The fields are:

Chapter 10. Debugging GCS 133

Debugging GCS

* The task ID (TIDTB)

* The task block address (TIDTB)

* The task completion code (TBK)

* The state block address (TBK and STBK)

* The state block type (STBK)

* The state block module name (STBK)

* The state block module entry point address (STBK) and
¢ The state block general registers (STBK).

For more information on task management, see|“Task Management” on page 136.]
Storage management control blocks are displayed by the DUMPSCAN TSAB
subcommand. The fields are:

* The pointer to the TSABE (TSAB extension), which contains a pointer for each
grain of storage to a list of task storage header blocks that describe the storage
owned by a task (for terminology see|“Storage Management” on page 149).

¢ A 256-bit map of subpools owned by a task (TSAB).

In addition, the TSAB subcommand also displays for each task:
e The task ID (TBK)

* The task block address (TBK)

* The task storage anchor block address (TBK).

For more information on task management, see|“Task Management” on page 136

IUCV management control blocks are displayed by the DUMPSCAN IUCV
subcommand. The fields are:

e The user ID block (UIDB) address (IUCPT)

* The exit address (IUCPT)

e The user word (IUCPT)

* The task block address (IUCPT) and

* Flags of the path status (IUCPT)

* The Dump identifier, if present.

For more information on TUCV, see ["The Path ID Table (IUCPT)” on page 148

NUCON and SIE

In GCS, the NUCON control block and the SIE state descriptor block are located in
the first virtual page of GCS. Each GCS virtual machine, when logged on, has its
own NUCON and SIE.

There may be times when diagnosing problems on a running system may be
preferable to looking at a dump. In these cases the QUERY ADDRESS command
can often make chaining through control blocks and data areas easier. See
IGroup Control System| for more information on this command.

The data contained in these two blocks is not shared, as the various fields in the
NUCON and SIE relate to the operation of a specific user rather than the group.

The NUCON contains many important fields describing the current status of GCS
in a GCS virtual machine. Examples of such fields are:

¢ The various old and new program status words (PSWs)
* The I/O subsystem identification word (SID) (X'B8' in the NUCON)
e The 1/0 interrupt parameter (X'BC' in the NUCON)

134 z/VM V6.3 Diagnosis Guide

Debugging GCS

* The virtual machine's user ID (X'204' in the NUCON)
* The task ID of the currently active task (X'212' in the NUCON)

* A pointer to a string of the four anchors of common storage: low common start,
low common length, high common start, and high common length.

In addition, other important GCS control blocks are pointed to by NUCON fields.
Examples of those control blocks are:

* The task block of the currently active task (pointed to from X'214' in the
NUCON)

¢ The common trace block (pointed to from X'21C' in the NUCON)
* The SIE (pointed to from X'5C4' in the NUCON)

* Various work areas (for example, the abend work area, pointed to from X298" in
the NUCON).

The SIE is an extension of the NUCON and contains further pointers to other
control blocks. Some pointers, useful when performing diagnostics, that you can
find in the SIE are:

* The address of the task ID table (X'10" in the SIE)

e The address of the asynchronous exit queue (X'18' in the SIE)

* The address of the virtual machine control block (VMCB) (X'2C' in the SIE)

* The address of the storage management anchor block (SMAB) (X'40' in the SIE).

Virtual Machine Control Block

When a virtual machine IPLs GCS, a VMCB is maintained for that machine. There
are as many VMCBs as the maximum number of virtual machines that can join the
GCS group (the maximum number is specified at GCS generation time).

A VMCB is 24 bytes long and, among other information, contains:
* The virtual machine user ID (the first 8 bytes of the VMCB)
* The machine ID (the 2 bytes at displacement X'0A' of the VMCB).

For other information on VMCBs, see [“VMCB — Virtual Machine Control Block”]

How to Determine the User ID That Created a Trace Entry

Each entry in the GCS internal trace table has a reference to the machine ID of the
virtual machine that created the entry. The machine ID is a binary number
assigned to the virtual machine when GCS is IPLed in the virtual machine.

To determine the user ID that created a trace entry, you have to translate the
machine ID to its corresponding user ID. In other words, you have to access the
VMCBs of the GCS virtual machine, because the VMCB is the place where user ID
and machine ID are correlated.

To find the VMCBs of the virtual machines in a GCS group, use the following
procedure:

1. Locate the SI Extension (SIE) address in the NUCON at X'5C4'
2. Find the address of the VMCB array at SIE + X'28'.

Chapter 10. Debugging GCS 135

Debugging GCS

How to Locate the GCS Common Lock

The SIELKCOM field in the SIE (at displacement X'20") points to the common lock.
The common lock is a word-long field in common storage that contains the
machine ID (2 bytes) and the task ID (2 bytes) that are currently holding the
common lock. If the common lock is free, it contains binary zeros.

The GCS QUERY LOCK command can be used to display the status of the
common lock. A query on the lock is sufficient to determine if the lock has
changed since the last query.

When you are recreating a problem and you want to know when the common lock
is being acquired, use the CP TRACE command. This can be done by entering a
CP TRACE on a store into the common lock word, and when CP TRACE stops the
virtual machine you can display the machine and task ID values.

If at that time you take a dump of the virtual machine that has acquired the lock,
you will be able to use DUMPSCAN subcommands to interrogate the task in
question and determine what module is issuing the request for the lock.

An alternative could be to use the CP TRACE command to display stores in the
SVC OLD PSW (at displacement X'20" in the NUCON). This would be an SVC 203
(X'CB') for the LOCKWD macro.

The mapping of the NUCON in GCS is different from that in CMS. The SIE has
also been added as an extension of the NUCON. Both contain important
information for the debugging of GCS. For more information on the NUCON and
SIE Extension mappings and field descriptions, see ['NUCON — GCS Nucleug|
[Constant Area” on page 193 and [“SIE — NUCON Extension” on page 197

Task Management

This section describes the use of different types of blocks.

Task Block

The task block (TBK) gives you a good idea of the state of a task. The task block
for a task is pointed to from the task ID table and contains information such as:

* A pointer to a list of state blocks describing the programs that have been
running under the task

* A pointer to a list of load blocks describing the programs that the task has
loaded in storage through a LOAD SVC (SVC 8 or SVC 122) or through the GCS
LOADCMD command

e The value of the registers and PSW when the task is dispatched, if the task is
dispatchable

* The address of the task block of the owning task
* The task ID and task priority.

For information on the task block mapping and field descriptions, see
[Task Block” on page 199)

State Block

GCS uses state blocks (STBLKSs) to keep track of a particular task's processing
activity.

136 z/VM V6.3 Diagnosis Guide

Debugging GCS

There is a state block for each active program in the task. The primary purpose of
the state block is to save and restore PSWs and other processing status in
particular steps in a task.

The chain of state blocks for a task can be seen as an active stack:

* When the task is created, a state block for that task is also created. This state
block is always called INIT.
¢ When certain events occur in the task, GCS adds new state blocks to the top of
the stack. GCS sets a flag byte (at displacement X'24") in the state blocks to
indicate what type of event has occurred:
— If the task has issued a LINK, SYNCH, XCTL, or ATTACH macro, the flags
contain X'80', and the state block is referred to as a LINK block.

Note: If the task has issued a SYNCH macro with RESTORE=YES, the flags
contain X'90". The RESTORE=YES operand tells GCS that the general registers
2 through 13 are to be restored when control is passed back to the calling
program.

— If the task has issued an SVC instruction, the flags contain X'40', and the state
block is referred to as an SVC block.

— If an asynchronous exit has been scheduled for the task, the flags contain
X'20', and the state block is referred to as an AEB block.

In this case, other flags (at displacement X'25') in the AEB block, indicate
whether the asynchronous exit was scheduled as a result of a SCHEDEX
macro, an I/O interrupt from a general 1/O device, or a timer interrupt.

* When a program represented by a state block ends, the corresponding state
block is removed from the top of the stack.

The preceding discussion leads to the conclusion that the analysis of the existing
state block chain (stack) for a task gives an important idea of the events (LINK,
SVC, or AEB) that are still being handled, and the order they have occurred.

The state block chain is pointed to from the task block with the most recently
added state block at the beginning of the chain.

The PSW and the general registers in a state block see the previous program
running under the state block. The PSW for a running program is in the task block.

For more information on the state block mapping and field descriptions, see
[‘'STBLK — State Block” on page 201

WAIT COUNT Field in a State Block

An important field in a state block is WAIT COUNT. Use this field (STBWAIT at
displacement X'26' in the state block) to determine if a task is waiting.

If the contents of the field are:
Value Meaning
0 The task is not in a wait state.

1 The task is in a wait state.

Note that the STBWAIT field is maintained by GCS only if the task has used the
WAIT SVC (SVC 1) to enter a wait state.

Chapter 10. Debugging GCS 137

Debugging GCS

By looking into the instructions that precede the SVC instruction, you probably
will find a LOAD (L) or a LOAD ADDRESS (LA) instruction that loads in Register
1 the address of the ECB (Event Control Block) (or ECBLIST) associated with the
wait. Use this to determine what the task is waiting for.

Note: If the task has entered a wait state by other means (for example, by a LOAD
PSW instruction, if the task was running in supervisor state) this is not reflected in
the STBWAIT field.

LINK Block

A LINK block is a type of state block that represents a module to which control
was passed when the task issued a LINK, SYNCH, XCTL, or ATTACH macro.

When that module returns control to the program that issued the macro, the LINK
block is removed from the state block chain of the task.

The caller's registers are not moved into a LINK block unless it is for a SYNCH
macro with RESTORE=YES.

The second word of the PSW in the LINK block (field STBPSW) points to the
address following the SVC instruction. Use this address to determine the module
that has issued the ATTACH, LINK, SYNCH, or XCTL macro.

SVC Block

An SVC block is a type of state block that represents a module to which control
was passed when the task issued an SVC instruction.

The second word of the PSW in the SVC block (field STBPSW) points to the
address following the SVC instruction. Use this address to determine the module
that has issued the SVC instruction.

Asynchronous Exit Block (AEB)

The AEB is a type of state block that represents an asynchronous exit that has been
scheduled to be run under a task.

Certain flags in an AEB indicate whether the asynchronous exit has been scheduled
by general I/O, SCHEDEX, or TIMER functions.

When an asynchronous exit is to be scheduled to run under a task, GCS gets an
AEB from storage, fills in the appropriate fields—such as register values, task block
address the AEB is to run under, and the entry point of the exit routine—and
queues that AEB on the SIEAEQ. It is then dispatched from the SIEAEQ to the
appropriate task state block chain.

Asynchronous exits resulting from SCHEDEX functions have their AEB blocks in
two additional chains:

SIEAEQ
Is a field in the GCS SIE control block that contains a pointer to a queue of
AEBs (located in private storage), to run in a virtual machine. This queue
is used as follows:

1. When a task, A, in a virtual machine wants to schedule an exit to run
in another task, B, task A issues the GCS SCHEDEX macro, specifying
the task ID of task B and the exit routine address.

138 2/VM V6.3 Diagnosis Guide

2.

3.

4.

Debugging GCS

GCS SCHEDEX processing, running for the “SCHEDEXing” task, gets
an AEB, fills in the appropriate fields, and queues the AEB in the
SIEAEQ.

When the GCS dispatcher gets its turn to run, before dispatching any
tasks, it checks if there are any AEBs queued in the SIEAEQ.

If so, it takes the AEB off the SIEAEQ and queues it at the beginning of
the task B state block chain.

When task B eventually gets dispatched, the exit routine runs as the
currently active state block.

VMCSCHDX
Is a field in the virtual machine control block (VMCB) that contains a
pointer to a queue of AEBs (located in common storage) used in

cross-machine exit functions. The pointer to VMCB is in the NUCON (SIE
at displacement X'28'). For more information on VMCB, see [“VMCB

[Virtual Machine Control Block” on page 207] An example of how this

queue is used is:

1.

When a task, A, in the virtual machine A wants to schedule an exit
routine to run in a task B in the virtual machine B, task A issues the
GCS SCHEDEX macro, specifying the machine ID of virtual machine B,
the task ID of task B, and the exit routine address.

GCS SCHEDEX processing, running for the SCHEDEX task, gets an
AEB, fills in the appropriate fields and, using Compare/Swap logic,
queues the AEB on the VMCSCHDX queue associated with the target
virtual machine (B).

After that, GCS running in virtual machine A issues an IUCV message
to virtual machine B that informs it about the exit routine to be
scheduled.

Virtual machine B is interrupted by the IUCV message (external
interrupt).

The IUCV interrupt handler in GCS calls the GCS scheduling routines
GCTSDT and GCTSDX.

These routines find the VMCB of the virtual machine B, dequeue any
AEBs queued on the VMCSCHDX queue for this virtual machine, and
queue them in the SIEAEQ queue.

Finally, when the dispatcher gets control in virtual machine B, before
dispatching any tasks, it checks if there are any AEBs queued in the
SIEAEQ.

If so, it takes the AEB off the SIEAEQ and queues it at the beginning of
task B State block chain.

When task B eventually gets dispatched, the exit routine runs as the
currently active state block.

The Dispatch Queue

Because GCS is a multitasking environment, tasks are performed concurrently. The
dispatcher is called each time a new task can be run. System services, such as
interrupts and service calls (SVCs), pass control to the GCS dispatcher.

Within a virtual machine there are multiple tasks to perform. Each task has a
priority associated with it. The task with the highest priority is given control to run

first.

Chapter 10. Debugging GCS 139

Debugging GCS

To keep track of tasks and their priorities, a dispatch queue is set up which chains
the tasks (through task blocks) by priority. The task with the highest priority is
placed at the beginning of the chain. Each priority level contains tasks of equal
priority. Each level is capable of containing more then one task, but each task on
that level is of the same priority.

If a task has been running an extended amount of time, the dispatcher switches to
another task of equal priority that is waiting in the dispatch queue. This only
happens if there is a task of equal or higher priority waiting to be processed.

When the dispatcher is ready to dispatch a task, it first looks at the tasks with the
highest priority level. These tasks are at the beginning of the dispatch queue. If the
first task on that level is ready to run, it is given control. If not, the next task (if
any) on the same priority level is checked.

This is continued until a task is found ready to run. If no tasks on that priority
level are ready to run, the next priority level is checked until a ready to run task is
found.

To find and follow the dispatch queue:

1. Locate the SI extension (SIE) address in the NUCON at X'5C4'".

2. Find the address of the first task block (TBK) on the dispatch queue at SIE +
X'14'.

3. TBK + X'00' is the address of the task block on the dispatch queue of higher
priority than this task block.

4. TBK + X'04' is the address of the task block on the dispatch queue of lower
priority than this task block.

5. TBK + X'08' is the address of the next task block of the same priority.
6. TBK + X'C'is the address of the previous task block of the same priority.

All of the task blocks on this chain are of the same priority and are dispatched
in turn.

Using the steps listed, the whole dispatch queue can be traversed and each task
waiting to be run can be found.

For more information on the Dump Viewing Facility and task management control
blocks, see [“Processing GCS Dumps with the Dump Viewing Facility” on page 132,

How to Find the Task ID Table

The task ID table lists all the tasks in the virtual machine. All valid task blocks
(TBK) are anchored in the task ID table (TIDTB). This table can be used to find all
tasks or a specific task by its ID. The make-up of the task ID table is shown in

[Figure 10 on page 141}

To find the task ID table (TIDTB):
* Locate the SI extension (SIE) address in the NUCON at X'5C4'.
» Find the TIDTB address at SIE + X'10'".

* The first 8 bytes in the table are table control data and do not point to a task
block. Instead it contains a table label and a pointer to the next task ID table.

¢ The table entries start at the TIDTB address + X'08'.
e Each TIDTB has 255 entries.

140 z/VM Ve3 Diagnosis Guide

Debugging GCS

Each TIDTB entry describes a task:

* Each entry is 8 bytes long

* The first halfword (the first 2 bytes) in an entry contains the task ID

* The following halfword (the second 2 bytes) is unused

* The next fullword (the last 4 bytes) contains the address of the task block for

that task.
0 2 4 8
TIDTB + X'0' label XXXX next TIDTB
TIDTB + X'8' task id XXXX task block addr
L[] L] L[]
task id XXXX task block addr

Figure 10. The Task ID Table (TIDTB)

How to Find Which Task Is Running

In NUCON there is a field that contains the task ID of the task currently running.
Use this task ID and find its entry in the task ID table. In NUCON there also is a
field that points directly to the task block (TBK) of the task currently running. This
address and the address of the task block in the TIDTB for the current task ID
should be the same.

* Locate the active TBK address in the NUCON at X'214".

* Locate the address of the state block of the last active module at TBK + X'10'.

See [“TBK — Task Block” on page 199|and [“STBLK — State Block” on page 201| for
important fields.

If you are using the Dump Viewing Facility, the following procedure using
DUMPSCAN subcommands yield similar information in formatted form:

* Enter DISPLAY X'212' to get the current task ID.
* Enter TACTIVE using the task ID just found.

* The display that results includes the completion code, the program name, and
the register contents associated with the state block.

If an abend occurs with a dump while GCS is processing an I/O interrupt or an
external interrupt, the pointer to the active task will point to a special task block
located in low storage. It will not be on any task block chain. The X'02' flag at
displacement X'CE' will be on to signify that is the special interrupt task block. See
[Table 7 on page 199| for displacement X'CE' and its flag bytes and descriptions.

Tracing Task and Program Management

ITRACE and ETRACE facilities record supervisor events and the GTRACE macro
records user events, as these events occur in GCS. Included in these event
recordings are the dispatcher and program interrupt trace table entries. These
entries can be of use when debugging potential task and program management
problems.

Chapter 10. Debugging GCS 141

Debugging GCS

* The dispatcher trace entry (X'01' type) is made whenever a task is dispatched. If
an active task is being redispatched, no trace table entry is created. The entry
includes the task ID, task block address, and PSW.

* The program interrupt entry (X'04' type) is made each time a program interrupt
occurs. It includes such information as the task ID and program old PSW.

* Each GTRACE entry in the trace table includes the task ID of the task that
issued the GTRACE.

Program Management

When you are analyzing a dump of a GCS virtual machine, there are some
important control blocks that give you information about the programs loaded in
storage.

A program can use GCS program management macros to dynamically load and
run program modules by name. GCS macros that may cause GCS to load a module
in storage are:

LOAD
Loads a module into storage. Control is not passed to the loaded module.

LINK Loads a module and calls it. When the LINKed module returns, control is
also returned to the module that issued the LINK.

XCTL Loads a module and transfers control to it. When the XCTLed module
returns, control is not returned to the module that issued the XCTL.
Instead, control is passed to the module that called the issuer of the XCTL
macro (if there is one) or to GCS.

The above GCS macros refer to a module by its entry point name (or ALIAS entry
point name as defined in the LOADLIB libraries).

When looking for the entry point, GCS searches the following items in sequence:

1. The virtual machine private storage, because the module associated with the
entry point name may already be loaded.

2. Any saved segment directories that may have been created with the GCS
CONTENTS macro, which sets up a directory for the entry points in that
segment.

For example, the VTAM saved segment has a directory built with the
CONTENTS macro. Therefore, you are able to LINK, LOAD, and XCTL to the
VTAM entry points.

The VSAM saved segment (used by NetView®) does not have a built-in
directory. Therefore, you are not able to LINK, LOAD, and XCTL to the VSAM
entry points.

3. The directories of any load libraries that may have been defined for the virtual
machine through the GCS GLOBAL LOADLIB command.

If the module cannot be found in storage and it exists in a load library, GCS loads

the module into storage. GCS keeps track of modules loaded in storage through

two lists:

e The virtual machine load list, which describes all the modules that have been
loaded into storage.

e The task load list, which associates loaded modules with the task that caused
the module to be loaded. Note that only modules for which the task has issued
a LOAD SVC are referred to in the task load list.

142 z/VM V6.3 Diagnosis Guide

Debugging GCS

Note: In addition to this list, GCS also creates a state block for a task each time
the task issues the ATTACH, LINK, SYNCH, or XCTL macro. State blocks are
discussed in [‘State Block” on page 136.|

In addition, other GCS macros are used with the program management functions:

IDENTIFY
Allows dynamic creation of a new entry point for a loaded module.

SYNCH
Calls a loaded module.

DELETE
Removes a module from storage.

BLDL Requests GCS to locate a module in a GLOBALed LOADLIB and to
retrieve the module size and characteristics.

Task Load List

The task load list is made up of load blocks representing programs that a task has
requested through the LOAD macro. There may be a load list for each task. The
load list consists of load blocks chained together and pointed to by the task block
(TBK + X'14).

The load block (LDBLK) contains the following information:

Displacement

Field Description
X'00" The program name
X'08' The address of next load block on chain
X'0C' The address of previous load block on chain
X'10" The address of NUCCBLK for this load block
X'14' The load count (2 bytes)
X'16' Flag

Byte Field Description
Ixxx Load issued by LOADCMD
X'17" RMODE and AMODE

You may enter a LOAD for a program more than once. The load count keeps track
of the number of LOADs issued for a program by a particular task. The count
ensures that the storage used to load the program is not freed while being used by
the program. The LOADCMD flag is used ensuring that the program storage is not
freed at command termination. For more information on the LOADCMD
command, see ['LOADCMD Command” on page 165.

Virtual Machine Load List

When GCS loads a program into storage, it builds a major NUCCBLK that contains
information about the program that was loaded. When a task issues a LOAD,
LINK or XCTL macro for a module that exists in the shared segment directory,
GCS builds a major NUCCBLK. If the loaded entry point is an ALIAS entry point,
or if an IDENTIFY macro is issued for a loaded program, GCS builds a minor
NUCCBLK. The minor NUCCBLKSs are chained together and pointed to by the
corresponding major NUCCBLK. When the major NUCCBLK is deleted, the minor
NUCCBLKSs associated with it are also deleted.

Chapter 10. Debugging GCS 143

Debugging GCS

The list of major NUCCBLKS is pointed to from the field NUCCBLKS in the
NUCON (at displacement X'5EQ"). The NUCCBLKSs contain the following
information:

Displacement
Field Description
X'00' The program/alias/identify name
X'08' The next NUCCBLK
X'0C' The previous NUCCBLK address for the major NUCCBLK
or major NUCCBLK address for the minor NUCCBLK
X'10' The entry point address

X'14'" Flags
X'16' The use count for the major NUCCBLK
X'18' Key

X'19' AMODE and RMODE from the LOADLIB
X'10' RMODE ANY
X'03' AMODE ANY
X'02' AMODE 31
X'01' AMODE 24
(Major NUCCBLK only)
X'20' The program start address or zero
X'24' The program size or zero
X'28' The alias / minor NUCCBLK address

The above maps both a major and a minor NUCCBLK. The major NUCCBLK is
larger with the additional fields at the end of the block. The program start address
and size will be zero if the program resides in common storage or a shared
segment. The KEY is filled in only for a major NUCCBLK and is the first bits in
the field.

The FLAGS field is 2 bytes long and is used as follows:

Byte Field Description
First Byte:

Ixxx xxxx
A major NUCCBLK
xIxx xxxx
An alias minor NUCCBLK
xxIx XxXxx
An identify minor NUCCBLK
Second Byte:
(Only used in the major NUCCBLK)
Ixxx xxxx
Reentrant
xIxx xxxx
Reusable
xx1x xxxx
A reusable module and currently in use
xxx1 xxxx
The module is executable
xxxx Ixxx
In common storage or shared segment
xxxx x1xx
The module is non-reusable and has been used

144 z/VM V63 Diagnosis Guide

Debugging GCS

How to Find Where a Program Is Loaded

Depending on what you know about a program, you can use one of the following
methods to find where the program is loaded and other information about the
program.

1.

If the program you are looking for is running in the current task:

* Using the procedure given in[“How to Find Which Task Is Running” on page
find the task block (TBK) for the task ID for the program.

* After the task block is located, locate the active state stack pointer at TBK +
X'10'". This points to the first state block in a chain.

* Locate the program name in the state block (STB) at X'00". The program
name may be the name of an ALIAS or IDENTIFY as well as the main
program itself.

¢ If this is not the name of the program you are looking for, follow the state
block chain to the next state block. Locate the chain pointer at X'10" in STB.

e If the program name is ‘INIT ’ or the chain pointer is zero, you have reached
the end of the chain. The program being searched for may not be running
under this task, or was not called by the program management SVC macros.

* When the state block for the program is found, locate the address of the
NUCCBLK at X'1C" in STB.

* The NUCCBLK contains information about the program, such as its name,
entry point address, where it is loaded, and more.

 If you only wish to know the entry point address for the program, it can be
found in the state block at STB + X"20'.

If you know that the program has been loaded using the LOAD macro, and
that it has been debugged using the Dump Viewing Facility, you can use the
following method to find where the program is loaded.

* Enter the TLOADL subcommand of DUMPSCAN to display the NUCCBLKs.

* The resulting display includes the load blocks for the tasks specified when
issuing the TLOADL subcommand. Each load block contains the program
name and the address of the NUCCBLK. The NUCCBLK contains the
address of the loaded program. For more information on NUCCBLK and
load blocks see|“Task Load List” on page 143|and [“Virtual Machine Load|
[List” on page 143

If the following are true:

* You have the program name

* The program has been debugged using the Dump Viewing Facility

* The program has not been loaded by using the LOAD SVC.

You can use the following method to find where the program is loaded:

* Enter the VMLOADL subcommand of DUMPSCAN to display the
NUCCBLKSs.

* The resulting display includes the major NUCCBLKs and minor NUCCBLKs.
The major control blocks represent the module itself, and the minors map
IDENTIFY or ALIAS entry points. The module name and address are found
in the major NUCCBLK, and the ALIAS or IDENTIFY entry points are found
in the minor NUCCBLK.

* The NUCCBLK addresses are also given in case you wish to display the
NUCCBLK in storage for more information about the program.

If you have the program name and the program is not running on the active

task or you are not debugging in the Dump Viewing Facility, you can follow

the chain of NUCCBLKSs in the following method:

Chapter 10. Debugging GCS 145

Debugging GCS

* Display the NUCCBLK block address at X'5E0" in the NUCON.

* Locate the program name at X'00' in the NUCCBLK. If this is not the
program name, follow the major NUCCBLK chain to the next NUCCBLK.
Locate the chain pointer at X'08' in the NUCCBLK.

* If the program name may be an ALIAS or IDENTIFY, search through the
minor NUCCBLKSs before going to the next major NUCCBLK. The pointer to
the first minor NUCCBLK is located at major NUCCBLK + X'28'. In the
minor NUCCBLK, the chain pointer for minor NUCCBLKSs is located at
minor NUCCBLK + X'08'. A zero in this field indicates the end of the chain.

* After the NUCCBLK for the program is found, you can use the information
in the NUCCBLK to find out more about the program—the entry point
address, where it is loaded, or its size, for example.

GCS Load Error

If your job abends with an abend code of 106 and a reason code of 030B in register
15 when you are loading a module, the GCS abend was caused by a disk I/O
error. The reason for the disk I/O error can be found in the ERRCODE field of the
DIODA.

To locate the ERRCODE field:
* Locate the address of the DIODA (NUCDIODA) at X'67C' in the NUCON
* ERRCODE is at displacement X'FF' into the DIODA.

IUCV

Note: In the IUCV section, when the word user appears, it refers to any supervisor
or problem program.

GCS supports communication within a virtual machine or between any two virtual
machines by using IUCV. Routines running within a task communicate through
IUCV with one of the following:

* Other routines in the same machine (same task or different task)
* Routines in other virtual machines
* CP.

When communication is set up through IUCV, the user is assigned a linkage for
communication called a path. A path is established when the source communicator
calls the IUCV CONNECT function using the IUCVCOM macro, and the target
communicator calls the IUCV ACCEPT function, again using the IUCVCOM
macro. Both the source and target communicators must be defined in the GCS
IUCV environment for a path to be established between them. That is, each must
issue an IUCVINI SET macro function first.

A single communicator can have multiple paths defined at a time. When an
TUCVINI SET macro is issued to admit a user into the IUCV environment, an
authorized user may make himself privileged, using the PRIV=YES parameter if
the user is running in supervisor state. This lets the task communicate on a path
using IUCV directly, rather than through the GCS IUCV support.

For more information on IUCYV, see IZ/VM.‘ CMS Application Development Guide for]

GCS TUCV support is further discussed in g/VM: Group Control System}

146 z/VM V63 Diagnosis Guide

Debugging GCS

Debugging Applications
When IUCV problems are first suspected, you should ensure that the application
or program running is using IUCV correctly and that the parameter lists are set up
correctly. TRACE stops should be set after IUCV macros are issued within a
program or application. After the IUCV function has completed, check the return
code in register 15 and any other information that is returned in the CP IUCV
parameter list. If the return code in register 15 is over 1000 (decimal), the error
occurred while the IUCV function was being processed by CP. The IPRCODE field
in the CP IUCV parameter list indicates the cause of the error.

Tracing IUCV

IUCV can be traced through the trace facility. Both CP and GCS keep track of
IUCV with trace table entries. CP trace makes an entry into the CP trace table for
each IUCV function that it processes. ITRACE and ETRACE make IUCV trace table
entries each time an IUCV SVC or external interrupt occurs for GCS. For more
grmation on GCS Trace facilities see [“Using the GCS Trace Facilities” on page]
128.

The IUCV Anchor Block (IUCBK)

The IUCV anchor block (IUCBK) contains general information about the GCS
IUCV environment. It is pointed to from the SIE at SIE + X'BS'".

The IUCV anchor block contains the following among other information:

Disp Label Field Description

X'00' TUCCBFAD Address of control external interrupt buffer (EIB)

X'04' TUCEIBAD Address of application external interrupt buffer

X'08' IUCVIDAN Addpress of user ID block (IUCID) chain

xX'ocC' IUCPRMAD Address of internal copy of IUCV parameter list

X'10' IUCVPTAD Address of path ID table

X'14' IUCVSAVE Address of user savearea

X'24' ITUCVCONN Maximum number of connections allowed (from MAXCONN

in VM directory entry)

The control external interrupt buffer (EIB) contains information about the last
interrupt on a control path. The application EIB contains information about the last
interrupt on a non-control path. For more information about control paths see
k/VM: CP Programming Services|

The user ID block (IUCD) chain and the path ID table are explained later in this
chapter in more detail.

The IUCPRMAD points to a copy of the last CP IUCV parameter list that was
issued by the GCS IUCV support, either implicitly (IUCVINI) or explicitly
(IUCVCOM). The internal parameter list holds a copy of the last CP IUCV
parameter list that was issued by the GCS IUCV support on behalf of one of its
users. It is also used for IUCV functions that GCS IUCV support must start, for
example, to sever an incoming path to a user that has not issued an IUCVINI SET
function.

The User ID Blocks (IUCID)

User ID blocks contain information about active users in the IUCV environment.
There is an IUCID for each user, containing the user name, user word, and

Chapter 10. Debugging GCS 147

Debugging GCS

associated task block address. The IUCIDs are chained together, with the most
recently added user at the beginning of the chain. The first IUCID is pointed to by
IUCVIDAN in the IUCV anchor block (IUCBK).

The user ID block is built when a user is admitted into the IUCV environment
using the IUCVINI SET macro. The name specified in the macro is the name by
which the user is known in the IUCV environment. When paths are established
using [UCVCOM CONNECT and IUCVCOM ACCEPT functions, the user names
specified on the two macro invocations identify the two parties wishing to do
ITUCV communications. The IUCVINI CLR macro ends the IUCV environment for
the specified user. When the user is terminated from IUCYV, the associated user 1D
block is deleted from the user ID chain, and all paths for the user are severed.

The IUDB contains the following information:

Displacement
Field Description
X'00' The next user ID block address
X'04' The general exit address
X'08' The user name
X'10' The user word
X'14'" The task block address
X'18' Flags

Byte Field Description

Ixxx The problem state indicator

xIxx The privilege state indicator

xx1x The exit will be run in AMODE 31

The Path ID Table (IUCPT)

The path ID table contains an entry for every possible IUCV path based on the
maximum number of paths available for this virtual machine. A path entry is filled
in when the path is established using IUCVCOM CONNECT, and also on the
resulting pending connect interrupt. Therefore, a single communication's path is
represented by two path entries. A path can be in different states as indicated by
the flags in the path entry. Before any GCS IUCV function is processed, the state of
the path is checked to see if the function is allowed.

For more information on the Dump Viewing Facility and IUCV management
control blocks, see [“Processing GCS Dumps with the Dump Viewing Facility” on|

Each path ID table entry is 20 (X'14') bytes long.

The path ID table contains the following information:

Displacement
Field Description
X'00' The address of user ID block
X'04' The exit address
X'08' The user word
X'0C' The task block address
X'10' Flags

Byte Field Description
Ixxx xxxx
The path is active.

148 z/VM V6.3 Diagnosis Guide

Debugging GCS

X1Ixx xxxx

The connect is issued.
xx1x xxxx

The connect is pending.
xxx1 xxxx

The path is quiesced.
xxxx Ixxx

The path is severed.
xxxx xIxx

The exit will be run in AMODE 31
xxxx xx1x

Problem state indicator
xxxx xxx1

Privilege state indicator

The task block address represents the task that was running when the path was
created. The user ID block address points to the user ID block for the owner of the
path. The exit address is for the owner's path-specific exit.

How to Find Information about a Path

You can find information about a path, such as who owns it and its present status,
in a path ID table entry for the path. The path ID provides an index into the path
table to get to the entry that describes the particular path.

* If you have a VMDUMP formatted dump, you can use the Dump Viewing
Facility.
— Enter the Dump Viewing Facility DUMPSCAN IUCV subcommand

— The resulting display shows the important information found in each of the
path entries in the path ID table.

* If you are manually displaying addresses and following chains, this procedure
ylelds the path table entry for a specific path ID:

Locate the SI extension (SIE) address in the NUCON at X'5C4'".
— Locate the IUCV anchor block (IUCBK) address at SIE + X'BS'.
— Locate the path ID table (PIDT) address at IUCBK + X'10'.
— The specified path ID is in hexadecimal.
— Calculate the offset as follows:

Offset = pathid x X'14".

Each path table entry is X'14' or 20 bytes long.

For example, if pathid = X'B', the path entry is at displacement X'B' x X'14' =
X'DC' into the table.

— The path entry is located at PIDT + offset.
— See the path ID table entry map for the layout of the path entry.

Storage Management

The storage management component of GCS controls the allocation of storage for a
GCS virtual machine. GCS manages storage with three different perspectives:

 Storage location (private or common storage, above or below the 16 megabyte
line)

* Storage protection (storage key and fetch or store protection bits)

* Storage ownership (persistent or task related storage).

Chapter 10. Debugging GCS 149

Debugging GCS

Information about common storage for the whole virtual machine is in the storage
management anchor block (SMAB). To locate the SMAB, first locate the SIE address
at location X'5C4' in the NUCON and then locate the SMAB at displacement X'40'
in the SIE.

The fields describing common storage are:

1. The address of the start of low common storage is in SMASCOML (SMAB +
X'60").
The length of low common storage is in SMALCOML (SMAB + X'64).

2. The address of the start of high common storage is in SMASCOMH (SMAB +
X'68").
The length of high common storage is in SMALCOMH (SMAB + X'6C).

For more information on storage management mapping and field descriptions, see
[“SMAB — Storage Management” on page 203/

Storage Anchor Blocks

There are five types of storage anchor blocks:
* Private storage anchor blocks:

— Low private anchor block (LPAB)

— High private anchor block (HPAB),

depending on the position of the private storage—above or below the 16
megabyte line.

* Common storage anchor blocks:
— Low common anchor block (LCAB) and
- High common anchor block (HCAB),

depending on the position of the common storage—above or below the 16
megabyte line.

* Task storage anchor blocks (TSAB).

The first four storage anchor blocks (LPAB, HPAB, LCAB and HCAB) are identical.
They contain pointers to the start of arrays of major and minor storage anchor
control blocks (SACBs) describing the free storage pages.

The TSAB contains a pointer to the TSAB extension which is a string of pointers to
the start of a double-linked list of task storage header blocks (TSHBs), one pointer
for each division (or grain) of the storage. The TSHBs describe the storage
belonging to a task.

To find any of the four free storage anchor blocks:
1. Locate the SIE address at displacement X'5C4' in the NUCON.

2. Locate the pointer to the storage management anchor block (SMAB). This
pointer is at displacement X'40' in the SIE.

The LCAB is pointed to by the SMALCAB field (at SMAB + X'00').
The HCAB is pointed to by the SMAHCAB field (at SMAB + X'04").
The LPAB is pointed to by the SMALPAB field (at SMAB + X'08').
The HPAB is pointed to by the SMAHPAB field (at SMAB + X'0C').

I

The TSAB is pointed to by the field TBKSTOR at displacement X'A8' in the task
block (TBK).

150 z/VM V6.3 Diagnosis Guide

Debugging GCS

For more information on the storage anchor block mapping and field descriptions,

see ["ANCH — Storage Anchor Block” on page 205,

Description of the Storage Anchor Control Blocks (SACBSs)

There are two types of storage anchor control blocks (SACBs): major and minor.

A major SACB is 14 bytes long, and a minor SACB 10. They are in contiguous
storage, are built at initialization time, and are permanent.

There is a major SACB to describe each page of free storage. Contiguous to each
major SACB is a chain of minor SACBs. Each of these describes a noncontiguous
free area in the page.

Important Fields in Major SACBs

The major SACBs contain the following fields:

Displacement

X'00'
X'04'

X'08'

X'0A'

x'oC'
X'0D!

Field Description
MAJNXTPT points to the major SACB for the next page of the same key.

MAJBKPTR points to the major SACB for the previous page of the same
key.

MAJMAXLN is a 2-byte field that names the largest free area on the page
that does not begin on a page boundary.

MAJLNCON is a 2-byte field that gives the length of the free area at top of
the page.

MAJKEY is an 8-bit field that contains the key and fetch bit for the page.
Flags

Byte Field Description
1111 xxxx
Not used
xxxx 1xxx
MAJTOLIN SACB to go to no key queue
XxXxx x1xx
MA]JLIMBO SCAB to go to no key queue
XXXX Xx1x
MAJENDL Major SACB is at the low end of array of majors
xxxx xxx1
MAJENDH Major SACB is at the high end of array of majors

Important Fields in Minor SACBs

Minor SACBs are control blocks used for the following purposes and contain
specific fields:

1. Combined with a major SACB, they describe free storage on a page boundary.
Each of these minor SACBs are headers for a chain of minor SACBs that
describe all free storage on a given page.

Displacement

Field Description

X'00' MNORNXT points to the next minor SACB used to describe the next

noncontiguous free area on the same page.

X'04' MNORPTREF points to the free area on the page boundary.

Chapter 10. Debugging GCS 151

Debugging GCS

X'08' MNORLN is the length of free area on the page boundary; this field
has a length of 2 bytes.

2. They describe free storage not on a page boundary. These minor SACBs are
found on pages of storage that are chained together and are pointed to by
ANCHPGMN in the anchor block.

Displacement
Field Description

X'00' MNORNKXT points to the next minor SACB used to describe the next
noncontiguous free area on the same page.

X'04' MNORPTRF points to free storage not on a page boundary.

X'08' MNORLN is the length of the free storage, this field has a length of
two bytes.

For more information on the Dump Viewing Facility and storage management
control blocks, see [“Processing GCS Dumps with the Dump Viewing Facility” on|

Checking for Storage Fragmentation

Check the fields ANCHPGL and ANCHPGH, which point to the major SACBs that
represent the lowest and highest completely free pages of storage. If these pointers
are both zero, then storage is fragmented down to the page level. If they are not
zero but the request is for greater than a page, scan the major SACB between these
major SACBs to see if there is sufficient storage.

Scanning the Major and Minor SACBs
1. Find the appropriate anchor block for private or common storage.
2. Starting with ANCHMA]JL, scan the major/minor combinations:
a. Major SACBs exist for each page of private/common free storage.
b. Minor SACBs have the address of the page represented (MINPTRF at X'04).
C. Match the page represented with the address of the storage in question.
1) These minor SACBs are contiguous with the major SACBs they describe.
2) Scroll until the corresponding page is found.

Checking Free Storage on Any Given Page
1. Find the appropriate anchor block for the private or common storage.

2. Starting with ANCHMAJL, scan the major/minor combinations for the major
SACB for the appropriate page. For more information, see [‘Scanning the Major|
[and Minor SACBs.”|

3. The first minor SACB is the header for a chain of minor SACBs that describe all
free storage for the page. This minor SACB describes the free storage on the
lower page boundary. If MNORLN is 4 KB, the page is fully free and is
available for use in any key.

4. If MNORLN is not 4 KB, look at MAJMAXLN. This field tells you the largest
free piece of storage available on the page not on a page boundary.

Note: Because this page is not completely free, it cannot be used for a request
of another key.

5. To calculate free storage for two or more contiguous pages, check MAJLNCON
for free storage at the top of the page and MNORLN for free storage at the
bottom of the page.

152 z/VM V6.3 Diagnosis Guide

Debugging GCS

6. To find the description of all free storage on a given page, follow the chain of
minor SACBs.

Flndlng the Key for a Given Page

To find the actual key for a given page of storage, use the CP command
DISPLAY K.
* To see what key GCS has for the same page:

1. Scan the chain of major SACBs for the one that describes the page you are
interested in. For more information, see I”Scanning the Major and Minor|
[SACBs” on page 152.]

2. To find the key and fetch bit in MAJKEY:

a. The GCS storage management key and fetch protect bit are right-justified.

b. In GCS, 1C corresponds to EO through E7 in CP, meaning key 14
nonfetch-protected storage.

MAJKEY 000kkkkF CP KEY | KKKKFXXX

* To check pages of free storage in any given key and fetch protection:
1. Find the appropriate anchor block for private or common storage.
2. ANCHKEYP (at X'04' in LPAB or HPAB) is the start of an array of 32

records that are the anchors for chains of major SACBs for each key and
protection status.
3. To find the appropriate pointer for the key and fetch protection you want to

follow down the chain:

a. The first pointer is for key zero nonfetch-protected, the second for key
zero fetch-protected, and so on.

b. This pointer will point to the first major SACB that describes free storage
for the key and fetch protection.

c. Use MAJNXTPT, the forward pointer, and MAJBKPRT, the backward
pointer, to follow up and down the chain.

Control Blocks Describing the Storage Owned by a Task

Task-owned storage can only be in private storage. Though a task can get common
storage with the GETMAIN macro, that storage is not automatically freed when
the task ends and must be freed with the FREEMAIN macro by the task itself or
by another task. No control blocks describe the gotten common storage.

The task-owned storage is described by two types of control blocks:
* Task storage headers (TSHs)
* Gotten storage blocks (GSBs).

As shown in [Figure 11 on page 154} the TSHs are blocked in blocks called task
storage header blocks (TSHBs) and the GSBs are blocked in blocks called blocks of
gotten storage blocks (GSBBs). The TSHBs are linked in a double linked list. Each
TSH points to a GSBB block (block of GSBs). Each GSB has the final description of
a piece of gotten storage (address, length, subpool, and key).

The TSHB contains a block header followed by a string of TSHs. The GSBB
contains a block header followed by a string of GSBs. Neither the TSHs in a TSHB
nor the GSBs in a GSBB are linked together.

Chapter 10. Debugging GCS 153

Debugging GCS

TBK
TSAB
A8| TBKSTOR 0: ——
TSATSABE 1> TSABE
Bitmap of 0 | GRAINO —>A (see A below)
subpools 4 | GRAIN1
owned
8 | GRAIN2
C | GRAIN3
Number of grains =
SIEVMSIZ/SMAGRAIN
TSH page header GSB page header
0| TSHPNFP 0| GSBPNFP
4| TSHPPFP 4| GSBPPFP
8| TSHPCNT 8| GSBPCNT
A . TSHB . GSBB
0| TSHHNTSH 0| GSBHTSH
4| TSHHPTSH 4| GSBCNT
8| TSHHTSAB 8| GSB
C| TSHHCNT = GSB
10| TSH
[TSH] GSB (expansion)
0 | GSBADDR
4 | GSBLEN
TSH (expansion) 8 | asBsuBP
0| TSHLADDR 9 | GSBELAG
4| TSHAGSBB A
B | GSBKEY2

Figure 11. TSHB and GSBB Control Blocks

Each page of Task Storage Header (TSH) blocks contains a header at the beginning
of the page. The fields in the page header are:

Disp Label Field Description

X'00’ TSHPNFP Next page of TSH page blocks.

X'04' TSHPPFP Previous page of TSH page blocks.

X'08' TSHPCNT Number of used TSH blocks on this page.

The fields in the Task Storage Header Block (TSHB) are:

Disp Label Field Description

X'00' TSHHNTSH The link pointer to the next TSH block for the same task
X'04' TSHHPTSH The link pointer to the previous TSH block for the same task
X'08' TSHHTSAB The link pointer back to the TSAB

x'oC' TSHHCNT The number of TSHs in this block

X'10' The first TSH in this block

The fields in a TSH are:

154 z/VM V6.3 Diagnosis Guide

Disp Label
X'00' TSHLADDR

X'04' TSHAGSBB

Debugging GCS

Field Description

The low address of the areas described by the GSBs in the
corresponding GSB block

The address of the block of GSBs

The description of the relation between the TSHB and the block of TSHs is in the
SMAB. The field descriptions are:

1. The length of a block of TSHs (including the block header) is in the
SMATSMBL (SMAB + X'40").

2. The number of blocks of TSHs on a page is in SMATSHBN (SMAB + X'42").
3. The maximum number of TSHs in a block is in SMATSHBM (SMAB + X'44").

Each page of Gotten Storage Block (GSB) blocks contains a header at the beginning
of the page. The fields in the page header are:

Disp Label

X'00' GSBPNFP
X'04' GSBPPFP
X'08' GSBPCNT

Field Description

Next page of GSBs.

Previous page of GSBs.

Number of used GSB blocks on this page.

The fields in a Block of Gotten Storage Blocks (GSBB) are:

Disp Label
X'00' GSBHTSH
X'04' GSBCNT
X'08'

Field Description

The link pointer back to the TSH
The number of GSBs in this block
The first GSB in this block

The fields in a GSB are:

Disp Label

X'00' GSBADDR
X'04' GSBLEN
X'08' GSBSUBP
X'09' GSBFLAG
X'0B' GSBKEYZ

Field Description

The address of the gotten storage

The length of the gotten storage

The subpool of storage

A flag byte containing, in the right-most bit, the flag showing
whether the piece of storage described by the GSB is in key zero
nonfetch-protected

Key 0 non-fetch protected storage.

The description of the relation between the GSBB (block of GSBs) and the GSBs is
also in the SMAB. Field descriptions are:

1. The length of a block of GSBs is in SMAGSBBL (SMAB + X'46').
2. The number of GSB blocks on a page is in SMAGSBBN (SMAB + X'48").
3. The maximum number of GSBs in a block is in SMAGSBBM (SMAB + X'4A").

How to Find the Storage Belonging to a Given Task
1. Find the task block (TBK) (see [“Task Management” on page 136).
2. Find TBKSTOR (X'A8' into the TBK), which points to the task storage anchor

block (TSAB).
3. TSATSABE (X'04'

into the TSAB) points to the task storage anchor block

extension (TSABE).

Chapter 10. Debugging GCS 155

Debugging GCS

4. TSABTSHB (X'00' into the TSABE) points to the first TSHB (TSH block) of the
array of TSHBs belonging to the task.

How to Check What Subpools Belong to a Given Task

1. Find the task block (TBK) (see [Task Management” on page 136).
2. TBKSTOR (X'AS8' into the TBK) points to the TSAB.

3. TSASPOOL (X'08' into the TSAB) is a 256-bit map of all possible subpool
values. Each subpool number that is owned by the task has the appropriate bit
on. If the bit is off, then there is an owning task with the corresponding bit on.
You can search up the task chain to find the owner of any given subpool by
looking for the appropriate bit to be on. At least one task has the bit on. The
commands task has all 256 bits on.

System-Wide Description of Storage

The total of your virtual machine size (including common storage, though not used
as task-oriented storage) is divided into sections called grains. The size of a grain
is determined at IPL time when the SMAB is built. The field describing the size of
a grain is SMAGRAIN (SMAB + X'3C'). The field named SMATSBEL (SMAB +
X'18') contains the number of existing grains times 4. Each grain has a pointer in
the TSABE to the first TSHB for that task in that grain. Consequently, SMATSBEL
represents the size of the TSABE (TSAB extension). Furthermore, there is, for each
grain, a double-linked list of TSHBs pertaining to that task. The number of grains
is fixed at IPL time; therefore, to find the anchor of TSHBs for a particular part of
storage, you need to determine the pointer in the TSABE (a zero entry indicates
there is no TSHB) pertaining to that particular grain.

System-Wide Description of TSHBs and GSBBs

The TSHBs and GSBBs reside on four (two for each type of block) double-linked
lists of pages. All four are anchored in the SMAB.

For each type of block the two linked lists are:
A list with full pages of TSHBs or GSBBs
* A list of pages containing space for at least one block (TSHB or GSBB).

The TSHBs are double-linked lists, and thus can reside on both lists of pages. The
pointers in the TSABE anchor the lists of TSHBs for each grain and point
somewhere on one of the two lists of pages to the first TSHB for that particular
grain.

The anchors in the SMAB of the four double-linked lists of pages are the following:

Displacement
Field Description
X'1C' Pointer to first page filled with TSHBs
X'20' Dummy backward pointer
X'24' A pointer to the first page of TSH blocks containing at least one free block
X'28' A dummy backward pointer
X'2C' A pointer to first page filled with GSB blocks
X'30' A dummy backward pointer
X'34' A pointer to the first page of GSB blocks containing at least one free block
X'38' A dummy backward pointer

Each page from any of the four lists has a header, the blocks follow immediately
afterward. The fields of the header are:

156 z/VM V6.3 Diagnosis Guide

Debugging GCS

Displacement
Field Description

X'00' A pointer to the next page of TSH or GSB blocks (TSHBs or GSBBs)
X'04' A pointer to the previous page of TSH or GSB blocks (TSHBs or GSBBs)
X'08' The number of used TSH or GSB blocks (TSHBs or GSBBs) on this page

Depending on the position of the page inside the list, the first or second position
could be zero.

Common Storage Management Problems
FREEMAIN or GETMAIN goes into an infinite loop:
1. GETMAIN or FREEMAIN is searching for the task that owns the subpool
requested. The task chain or the TSABs may have been overlaid.
a. This problem will show up on a task-related request.

b. Find the active task and search the task chain for each ancestor task. See if
any have been overlaid. (GETMAIN and FREEMAIN search back up the
task chain to find the task that owns the subpool.)

c. TBKSTOR (X'A8' into the task block) points to the task storage anchor block
(TSAB).

d. TSASPOOL (X'08' into the TSAB) is a 256-bit map of all the subpools owned
by this task. Either the active task or one of the owning tasks must have the
appropriate bit on for a given subpool. GETMAIN or FREEMAIN will
continue to search until the owner of the subpool is found.

Abend 80A, 804, or 878. Improper length or insufficient virtual storage:
1. Check the trace table for the length of the request. (Tracing is done for SVC

invocations of GETMAINs and FREEMAINSs. Branch entries to GETMAIN and
FREEMAIN are not traced.).

If the length is valid, then check for fragmentation. (See [“Checking for Storage|
[Fragmentation” on page 152))

2. If there is fragmentation, find out who has not freed the storage.

a. Find out who is not freeing storage by first finding the key of the storage
with the CP command DISPLAY K.

b. If most of the storage allocated is in key 6, then VTAM is not freeing the
storage.

c. If most of the storage is in key 14, then storage is not being freed by an
application such as RSCS.

d. If most of the storage is allocated in key 0, the problem could be internal to
GCS, or GCS could be getting storage in behalf of some application.

e. Check both the allocated storage of the task blocks and the free storage
described by the major/minor SACB for patterns. Are the same size pieces
of free storage being left? All major SACBs are found in contiguous storage
and can be easily scanned. All the minor SACBs that describe free storage
can be found on pages of minor SACBs pointed to by ANCHPGMN found
in the anchor blocks. Thus you can easily scan the minor SACBs.

f. Check the trace table for the last GETMAINSs. See if FREEMAINSs are done
for that storage.

Abend 778. One of the following could be true:
1. There is an invalid mode byte in SVC parameter list.

Chapter 10. Debugging GCS 157

Debugging GCS

2. The program is returning storage in wrong key.
a. It could be returning someone else's storage.
b. A privileged program could have changed the key.
3. Storage management ran out of storage for internal control blocks.

Check the following:
1. The parameter list set up by the macro.
2. Whether actual storage key matches what GCS storage management identifies

as the key. For more information, see [‘Finding the Key for a Given Page” on|
[page 153)

3. Fragmentation.

Tracing Storage Management

Supervisor tracing using ITRACE and ETRACE includes tracing GETMAINs and
FREEMAINS (called through SVCs) as they occur in GCS. GETMAIN trace entries
(X'08' type) and FREEMAIN trace entries (X'09' type) contain much of the same
information:

* The task ID

* The storage address obtained or released
* The length of the storage

* The storage subpool

e The invoker's address.

GETMAIN also includes the key of the storage being obtained.

General 1/0

GCS General 1/0 (GENIO) Functions: All 1/O except DASD and console 1/0 is
performed using the GCS GENIO macro. However, because GCS does not provide
any device specific code, using the GENIO macro requires that the application
requesting the I/O has to perform all the related I/O control tasks, including error
recovery.

You can use operands of the GCS GENIO macro to request the following functions:

OPEN is needed for an application to use and own a particular device. To open a
device, the program provides the virtual device address and the address of
an exit routine. GCS passes control to this exit routine whenever the
opened device presents an I/O interrupt.

When a GENIO OPEN is issued, GCS gets a table entry for the GENIO
table (GIOTB) for the device and initializes the entry.

A task or program may not open a device that is already open.

CLOSE
closes a device when the device is no longer needed.

GCS cleans up any 1/0 requests queued on the virtual channel queue,
halts any active I/O, and deletes the entry from the GIOTB table. (See
General 1/O Table (GIOTB)” on page 161 for a discussion of the GIOTB
table.)

The exit routine specified in the GENIO OPEN macro is no longer
scheduled if I/O interrupts are received from the device.

158 2/VM V6.3 Diagnosis Guide

Debugging GCS

MODIFY
modifies a CCW of an active I/O program. DIAGNOSE code X'28' is
issued to CP to effect the CCW modification.

CHAR
requests the characteristics (such as device class, type, and model) of a
device.

GCS gets this information by using DIAGNOSE code X'210'.

The CHAR function does not require the device to be open in order to
obtain the requested information.

START
starts an I/O operation to an open device.

For this operation, the program specifies the virtual device address and the
address of a channel program to be run on the device. The channel
program key is set to the PSW key of the program that issued the START.

GCS checks that:

* The device is open
¢ The device is not busy with another operation.

GCS issues a virtual SSCH instruction to the device.

GCS does not accept another START function to the device until the
current operation completes. The end of the operation is identified by a
device end interrupt.

STARTR
lets an authorized program use real channel programs with a dedicated
device. Only real attached devices may use real channel programs.

If a device is not capable of real I/O (not a real device), a return code is
set, and no further processing takes place.

The process of a STARTR function is similar to the START function, the
only difference is GCS uses DIAGNOSE code X'98' instead of an SSCH
instruction.

Note: A virtual machine must be authorized to issue DIAGNOSE code
X'98'. This authorization is granted by specifying DIAG98 in the directory
entry of the virtual machine (OPTION statement).

If the machine is not authorized for DIAGNOSE code X'98', a return code
is passed to the program issuing the GENIO STARTR function. See [z/VM;
[CP_Planning and Administration|for a description of the setup necessary to
use DIAGNOSE code X'98'.

HALT forces GCS to halt the device.

General I/0 in GCS lets a program drive any I/O device that is defined on the
virtual machine except a DASD. Using the GENIO macro, a user can obtain, use,
and release any I1/0 device. For further information on the GENIO Macro, see
kz/VM: Group Control System]

IOSAVE

Information pertaining to general I/0 is found in the IOSAVE area. IOSAVE is
used as a save area when 1/O interrupts are being handled. It resides in private
storage and is loaded during system initialization. The address of IOSAVE is found

Chapter 10. Debugging GCS 159

Debugging GCS

in the load map for the system. The user must have the load map (for the IOSAVE
address) to do general 1/O debugging for GCS.

IOSAVE gives an overall picture of general I/O in the GCS virtual machine at a
point in time, such as the time of the dump:

e The I/O old PSW, containing the address of the interrupting device in the
second halfword of the PSW

¢ The address of the first entry in the general I/O table linked list

* A pointer to the page fix table (PFXTB) that identifies the pages that have been
locked in real storage

e The address of the last entry in the general I/O table related to GENIO
processing (either from an I/O interrupt or from issuing a GENIO macro).

The IOSAVE block resides in private storage and is built during GCS initialization.
The initial value of all fields in IOSAVE is 0.

To determine the start address of the IOSAVE control block, locate GCTIOSAYV in
the GCS nucleus map.

The IOSAVE contains the following information:

Displacement
Field Description
X'00' A save area for registers (twice)
X'90' The I/O old PSW
X'98' The SCSW from the I/O causing the interrupt
X'A0' A pointer to the general I/O table
X'A4' The address of the page fix table
X'A8' The address of the last entry (before the current) in the general I/0O table
X'AC' A real I/O authorization flag
X'B0' The interrupt code
X'B2' The instruction length
X'B4' The address of the first entry in the subchannel identification table

The saved PSW and SCSW are stored in the IOSAVE from the last I/O interrupt.

The Subchannel ID Table (SIDTABLE)

At IPL time, a table is built containing the existing configuration. Each entry
corresponds to one subchannel. This is the SIDTABLE, a linked list with an entry
for every active device. The SIDTABLE is anchored in IOSAVE + X'B4', and it is
cross-linked with the general I/O table. (Each entry in the general I1/O table points
to a SIDTABLE entry and the reverse if there is a correspondent entry in the
general I/0O table.)

A SIDTABLE entry provides information about the device as:
* Subchannel ID

* Subchannel address

e Virtual and real device characteristics

* The interrupt request block for the respective device

* The operation request block for the respective device.

The fields in a SIDTABLE entry are:

160 z/VM V6.3 Diagnosis Guide

Debugging GCS

Displacement

Field Description
X'000' The next subchannel pointer
X'004' The subchannel ID
X'008' The subchannel address
X'00C" The virtual device type class
X'00D' The virtual device type
X'00E' The virtual device status
X'00F' The virtual device flags
X'010' The real device type class
X'011' The real device type
X'012" The real device model number
X'013' The real device feature code
X'014' The address of the GCTGIOTB entry
X'018' The interrupt request block
X'118' The operation request block

The General 1/0 Table (GIOTB)

The general I/0 table (GIOTB) is found at IOSAVE + X'AQ'. It is a linked list with
an entry for every open device.

A GIOTB entry provides information about the device, such as:
* The device address
* The task ID and task block address of the task that has opened the device

Only one task can own a device at any one time. A task owns a device when it
opens the device and loses ownership when it closes the device, or when the
task ends.

 Several flags describing the status of the 1/O activity on the device

If the flag for “exit scheduled” is on, an asynchronous exit block (AEB), pointed
to by GIOTB+X'38', contains information related to the exit and is enqueued on
the AEB queue pointed to by the SIE at SIE+X'18'".

* Characteristics of the device (virtual and real)
e A pointer to the subchannel ID table (SID) correspondent entry.

The field IOSGIOTB is found at IOSAVE + X'AQ'.

The general I/0O table contains the following information:

Displacement

Field Description
X'00' The address of the next entry in the table
X'04' The device address
X'08' The address of the task requesting an open
X'0C' The task ID of the task requesting an open
X'0F' Flags

Byte Field Description
Ixxx xxxx
I/0 is active
XIxx xxxx
I/0 is queued
xXIx xXxxx
An asynchronous interrupt has been queued
xxx1 xxxx
An exit has been scheduled for asynchronous interrupt

Chapter 10. Debugging GCS 161

Debugging GCS

xxxx Ixxx
An asynchronous interrupt has been queued
xxxx x1Ixx
An asynchronous interrupt is pending
xxxx xx1x
Wait
xxxx xxx1
Format 1 type CCWs are being used
X'14' The address of the exit when I/O has been completed (GIOEXIT)
(Ixxx xxxx)
Call exit in AMODE 31
X'"18"' The characteristics of the virtual device
X'"1C' The characteristics of the real device
X'24' The address of the CCW to be started
X'38' The address of the asynchronous exit block (AEB)
X'40' The synchronous interrupt control block (ICB)
X'8C' The asynchronous interrupt control block (ICB)
X'D8' The address of SID table entry

I/O Interrupt Handling

The exit routine specified in the GENIO OPEN macro is provided with the SCSW
from the interrupt, and with the sense bytes if a unit check occurred. When
subsequent SCSWs are received, the status bytes are OR'd with the SCSW already
stored in the interrupt control block.

The exit routine receives control in the key and state of the task that opened the
device:

* If the task is an authorized program, the exit routine is entered with interrupts
disabled.

e If the task is not an authorized program, the exit routine is entered with
interrupts enabled.

Interrupt Control Blocks

Within each GIOTB entry are two interrupt control blocks (ICBs) that keep
information about the last synchronous (GIOSICB) and asynchronous (GIOAICB)
I/0 interrupts for the device.

The asynchronous and synchronous ICBs are mapped alike, except that the
synchronous ICB contains sense bytes in case of unit checks. The synchronous ICBs
contain a 0 in the first byte, while the asynchronous ICBs contain a 1.

The ICBs contain the device address and the Subchannel Status Word (SCSW).

The interrupt control blocks contain the following information:

Displacement
Field Description
X'04' The device address
X'08' The first two words of the SCSW
X'10' The sense bytes (synchronous only - 32 sense bytes)
X'40' The complete SCSW from the interrupt

162 z/VM V6.3 Diagnosis Guide

Debugging GCS

How to Find What Pages Are Locked by PGLOCK

The page fix table (PFT) keeps track of the virtual pages that are locked into real
storage by the PGLOCK macro. When a page is locked, an entry for that page is
added to the PFT. The entry is deleted from the PFT when the page is unlocked
using the PGULOCK macro. The PFT entries are chained together and are pointed
to from IOSAVE (IOSAVE + X'A4").

A PFT entry contains the following information:

Displacement

Field Description
X'00' The address of the next PFT entry
X'04' The virtual address of the page
X'08' The real address of the page
X'0C' The task ID that locked the page
X'0E' Flag:

X'80' AMODE 24 page

Finding Pages Not Paged in After a Page Fault

If you are using the pseudo page fault support by issuing the CP command SET
PAGEX ON and the task block is waiting for page fault completion(s), you can
find out what page it is by following these steps:

At X'13C" into the SIE, there is a pointer which points to a chain of ECBs (Event
Control Blocks) that provide information about tasks waiting for a page of storage
to be paged into real storage. Each ECB control block pointed to by the pointer at
X'13C' into the SIE has the following format:

Displacement
Field Description
X'00' The forward pointer to the next ECB control block
X'04' The backward pointer to the previous ECB control block
X'08' The address of the page having page fault
X'0C' An ECB

Byte 01
Flag Field
IxxXXXXX
The task is waiting for the page to be paged in
X'0D' The three-byte address of state block of task waiting for page

Use the state block pointer to find the backward pointer to the task block that is
waiting for the page to be paged in real storage.

The page fault address for the last page fault handled is at X'90' If the high order
bit is on, GCS has been notified of the completion. The program interrupt code,
which must be X'14' for a page fault, is at X'S8E'

How to Find the Characteristics of a Device

The GENIO macro with the CHAR option gives information about a specific
device. The data returned contains both real and virtual characteristics. The device
does not have to be open for you to enter the GENIO CHAR macro.

Chapter 10. Debugging GCS 163

Debugging GCS

If the device has been opened, an entry in the general I/O table (GIOTB) for that
device has been made. The GIOTB contains both real and virtual characteristics for
the device. If there is no real device associated with the virtual device, the real
characteristics are zero.

I/0 Debugging

I/0 problems can occur in four areas: CP, GCS, VSCS, or VIAM and its
applications. Indicators that there may be an I/O problem in one of these areas
include:

* Printers or a SNA/CCS terminal that hang
e A VTAM link that does not initialize
* A questionable status returned from I/0O.

When you suspect an I/O problem, you should first keep track of error messages
and keep the console log, especially for VTAM. I/O problems generally require
recreating the problem using traces. You can set traces for each area suspected of
an I/O problem. Trace files are helpful to track the sequence of events following
the handling of an I/0O interrupt. Proceed as follows:

1. Set up traces for CP, GCS, VSCS, and VTAM by entering:

trsource id xx type gt user vtam

trsave for id xx on dasd

trsource enab id xx

vscs traceon (ext (starts the VSCS external trace)

etrace gtrace sio i/o group:

vtam f trace, id=luname, type=buf (or type=i/o) (starts the VTAM trace)

2. Recreate the problem.
3. Turn off the traces by entering:

trsource disa id xx

vtam f notrace, id=luname, type=buf (or type=i/o) (stops the VTAM trace)
etrace end (stops the GCS trace)

vscs traceoff (stops the VSCS trace)

If you want to do an internal trace:
1. Using ITRACE involves entering only the GCS and VTAM parts of this
scenario:

itrace gtrace (enables GCS to record GTRACE data in the internal trace table)
vtam f trace,id=a0la3e0,type=io (instructs VTAM to record IO trace data)
vtam f trace,id=a0la3e0,type=buf (instructs VTAM to record buffer trace data)

2. Recreate the problem.
3. Turn off the traces by entering:

vtam f notrace,id=a0la3e0,type=io (stops the VTAM IO trace)
vtam f notrace,id=a0la3e0,type=buf (stops the VTAM buffer trace)
itrace gtrace off (stops GCS internal tracing for GTRACE).

Trace Table Entries

After tracing has completed, the trace events for all areas that were traced are
found in the GCS internal trace table, unless a wraparound has occurred. If GCS is
using an external trace, the trace entries are in the TRFILE created for the
TRSOURCE trace ID. VTAM and VSCS entries in the trace table are entered as
GTRACE entries.

164 z/VM V63 Diagnosis Guide

Debugging GCS

GCS traces of I/0 requests (type X'06') and interrupts (type X'03') contain
information that may be useful when debugging I/O problems. For more
information on debugging VTAM, see VTAM Diagnosis Guide.

Recreating the Problem

When unexpected results occur on terminals or other SNA devices, you should
recreate the problem with VTAM and VSCS traces on. This helps isolate the failing
component. Most hung LU conditions are not GCS problems; they are probably CP
or VSCS problems.

Tracing 1/0O is important when trying to recreate an 1/O problem. It is helpful to
know the state and configuration of the system before and after I/O is processed.

When you track I/O for a VTAM application, you should look at the parameter list
that is being passed to GCS in the GENIO macro:

* Set a trace stop at the beginning of the GCS GENIO module (GCTGIM). This
address is found in the load map for GCS.

* When VTAM issues the GENIO macro for I/O processing, the trace will occur.
* Register 1 will point to the parameter list. Ensure that it is a valid parameter list.

Command and Console Support

The GCS VM operator uses the console to communicate with either the GCS
supervisor or applications through commands. The GCS supervisor and the
applications can communicate with the operator through write-to-operator (WTO)
and write-to-operator-with-reply (WTOR) instructions.

Command and console support includes commands issued from a terminal by a
user and commands issued through the CMDSI macro. A user can use the CMDSI
macro to enter GCS-, CP-, or LOADCMD-defined commands from within a
program running in GCS. For more information on the CMDSI macro, see
(Group Control System),

LOADCMD Command

The LOADCMD command is included in the command support. LOADCMD lets
users define their own command names for an entry point within a module. The
module must reside in a load library that the user has defined with the GLOBAL
command.

When the command defined by LOADCMD is issued, the module containing the

entry point gets control. For more information on LOADCMD, see
ontrol System|

The LOADCMD command uses the NUCEXT function to determine if a command
is already loaded as a nucleus extension. If the nucleus extension does not exist,
NUCEXT is used to establish a nucleus for the command.

The chain of NUCX blocks are pointed to by SIENUCX located in the SI extension
at X'A4'".
The NUCX contains the following important fields:

Displacement
Field Description
X'00' NUCXPRT points to the next NUCX block

Chapter 10. Debugging GCS 165

Debugging GCS

X'04' NUCXUWRD is the user fullword

X'08' NUCXNAME names the command

X'10' NUCXPSW points to the starting PSW for the nucleus extension

X'11' NUCXKEY is the user's key-bit(8)

X'14'" NUCXENTR points to the entry point address

X'30' NUCXADDR is the address of the NUCCBLK that corresponds to this
entry point

X'34' NUCXTASK contains the task ID of the establisher-fixed(16)

NUCON Information

NUCON has a command area that contains information about commands that
have been issued. This area contains information such as the command input line,
the tokenized parameter list, and the pointers to the extended argument list.

NUCON contains the following command areas:

Displacement
Field Description

X'2E8' The command input line

X'388' The tokenized parameter list

X'5B8' The address of the command token

X'5BC' The address of the beginning of the argument string
X'5C0" The address of the end of the argument string
X'5C4' The address of the SIE state descriptor block

The command input line contains the last command or commands the user entered
from the terminal along with the tokenized parameter list. The tokenized
parameter list is built in NUCON when the command and parameters are scanned
and validated. The extended parameter list is also built during the scanning, and
the fields for the extended parameter list in NUCON are filled in. When issuing
one or more commands from the command line, only the command token and
parameter list of one of the commands are included in the extended parameter list.

SIE Information

The SIE state descriptor block contains a commands and console area. This area
contains such information as ECBs, CCWs, and pointers to the queues for the
commands, messages, and replies that have not yet been processed.

The SIE contains the following command and console areas:

Displacement
Field Description
X'54' The attention interrupt ECB
X'58' The I/O complete ECB
X'5C' The output pending ECB
X'60' The command ECB
X'64' FLAGS
Ixxx xxxx
Read I/0O is in progress
XIxx xxxx
Write 1/0 is in progress
XXIX Xxxx
An attention is pending
xxx1 xxxx
Output is pending

166 z/VM V6.3 Diagnosis Guide

Debugging GCS

X'68' The address of the first CMDBUF on the queue
X'6C' The address of the last CMDBUF on the queue
X'70' The address of the first WQE on the queue
X'74' The address of the last WQE on the queue
X'78' The address of the first ORE on the queue
X'7C' The address of the last ORE on the queue

X'80' The Read/Write CCW

X'88' The No-Op CCW

X'90' The ORE ID bits

X'9D' The last assigned ORE ID

Each ECB in the SIE is 4 bytes long. The first byte in the ECB is the most
important. If the first bit is set on, the ECB is waiting. If the second bit is on, the
ECB has been posted.

The following queues are maintained by the communications task:
* CMDBUF

* Write queue elements (WQE)

* Operator reply elements (ORE).

Each of these queues is pointed to from within the SIE and contain elements that
have not yet been processed. As a command, write message, or reply is processed,
it is taken from the queue. The first element on each queue is the next element to
be processed. The last element on each queue is the most recently added element
to the queue.

The SIE contains two CCWs. The first CCW is used for READ/WRITE, the second
CCW is a no-op. The CCW contains a command code (CC), a data address, and
the length. The data address points to the data to be read or written. The length of
the data is given in the length field.

A format 0 CCW is mapped as shown in

Data

cc Address

Length

CC = X '0A" —» READ
CC =X'09" —» WRITE

Figure 12. CCW Mapping

The ORE ID bits in the SIE are used to keep track of which reply numbers are
outstanding (00 through 99). If the bit is on (1), the reply ID has been assigned, but
the reply is still outstanding. When the ORE is built as a result of a WTOR
instruction, the ORE ID is assigned from those that are available. When the reply is
processed, the ORE is freed, and the ORE ID is made available again. (The bit
associated with the ID is turned off.)

CMDBUF

The CMDBUF queue contains commands that have not yet been processed.
Immediate commands are processed as soon as they are entered and are not
entered into the CMDBUF queue. A CMDBUF element contains the command
input data, the extended parameter list, and the tokenized parameter string. These

Chapter 10. Debugging GCS 167

Debugging GCS

fields correspond to fields in NUCON. The last CMDBUF in the queue contains the
same information as in NUCON if it was the last command issued. If an

immediate command was the last command issued, that command's parameter list
is found in NUCON.

The CMDBUF element contains the following information:

Displacement
Field Description
X'00' The next CMDBUF on the queue
X'04' The length of the command data
X'08' Command input data
X'8C' The address of the command token
X'90' The address of the start of the argument string
X'94' The address of the end of the argument string
X'B0' The tokenized parameter list

WQE and ORE

The WQE queue consists of messages to the VM operator. A WQE is built when a
WTO or WTOR is issued. When the operator processes the WQE, it is taken from
the queue. If a reply is expected (WTOR issued), a corresponding ORE is found in
the ORE queue. The operator's reply is placed in the reply buffer pointed to by the
ORE. If the message did not expect a reply (WTO issued), no corresponding ORE
is present.

A WQE contains the following information:

Displacement
Field Description
X'00' The address of the next WQE on the chain
X'06' The length of the message text
X'08' Message text

An ORE contains the following information:

Displacement
Field Description
X'00' The address of the next ORE on chain
X'04' The reply ID
X'08' The address of the task block that issued the message
X'0C' The length of the message text
X'10' The message text
X'8C' The key of the issuer
X'8D' The length of the reply
X'90' The address of the reply buffer
X'94' The address of the reply ECB

A user can see if a message has not been processed by following the WQE chain,
looking for a particular message. The end of the chain is reached when the next
address in the chain is zero. If a WQE containing the message is not found, the
message has been processed by the operator. If the message requested a reply, the
user can follow the ORE chain, looking for the message and a reply. The user may
also enter the QUERY REPLY command, which will return all messages that have
outstanding replies.

168 2/VM V6.3 Diagnosis Guide

Debugging GCS

VSAM

GCS supports a VSAM interface very similar to that supported by CMS. As in
CMS, GCS supports an OS/MVS macro interface and maps these requests to
VSE/VSAM. The VSAM operations are performed by the VSE/VSAM program.

Data Compression Services

The VSE/VSAM for VM Version 6 Release 1 (program number 5686-081) supports
Data Compression Services to save DASD space in large customer databases. CMS
and GCS will also support the VSE/VSAM for VM Version 6 Release 1 interface
for Data Compression Services. When you use AMSERYV to create a VSAM cluster,
the COMPRESS parameter of the DEFINE function will allow record data to be
compressed when it is written and will expand data when it is read. This
parameter automatically lets VSAM know if the data is to be converted by VSAM
when it is read or written; no application program changes are necessary.

Application Migration Considerations

An existing application can take advantage of these VSAM Data Compression
Services without the need for program changes. The compression controls are in
the VSAM product and are not tied to the application code. Two things must be
done to migrate existing data sets to compressed format:

1. A 'VSAM.COMPRESS.CONTROL' KSDS compression control data set must be
defined in each catalog where compressed data will reside.

2. The existing data set CLUSTER must be redefined as COMPRESS format.

Existing data sets can be unloaded temporarily so that the cluster can be redefined
as compressed. The cluster can then be reloaded to create the compressed database
which is immediately usable by application programs.

Data Compression Services will take advantage of the CMPSC hardware
compression instruction, if available, to improve performance. Otherwise, a
software simulation of the instruction will be used to execute the actual data
compression.

Some return codes and feedback reason codes for Data Compression Services differ
between MVS/VSAM and VSE/VSAM environments. For more detailed
information on these differences, see “OS/VSAM Error Codes” in |z/VM: CMS
[Application Development Guide for Assembler|for OPEN, CLOSE, and I/O Request
error code tables.

GCS users can find error code information in “VSAM Data Management Service
Macros” of [z/VM: Group Control System}

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM
Version 6 Release 1 Commands, VSE/VSAM Version 6 Release 1 User’s Guide and
Application Programming, and VSE/ESA Version 2 Release 1 Messages and Codes.

Major differences between GCS and CMS for VSAM support include:

* AMS is not supported by GCS. Disk initialization, catalog definition, and file
definition must be performed under CMS.

* All required VSE SVC simulation is part of the GCS nucleus. Therefore, there is
no need to use a DOS segment.

* GCS includes basic support for VTAM.

Chapter 10. Debugging GCS 169

Debugging GCS

* The SET SYSNAME command can only be used before the VSAM environment
is initialized in GCS.

¢ GCS associates open ACBs with the task that performed the open. When a task
completes, all open ACBs associated with that task are closed.

* Sharing of VSAM data in GCS is governed by VSAM and is the same as sharing
VSAM data in a VSE partition.

* GCS supports Local Shared Resources (LSR) and Deferred Write (DFR) functions
to enhance synchronous VM/VSAM processing.

This section concentrates on those areas in VSAM support that are unique to GCS
or have changed from CMS. You should have some knowledge of how VSAM
works in CMS and GCS, and the differences. More information on GCS support of
VSAM is in Iz/VM: Group Control Susteml General information on VSE/VSAM
support within VM is in k/VM: CMS Application Development Guide for Assembler].

NUCON Changes

The GCS NUCON differs from the CMS NUCON in regard to VSAM support. The
following is a summary of the changes in the NUCON for GCS support of VSAM
and other information that is still found in the NUCON.

* The communications vector table (CVT) address is still located at X'10'" in the
NUCON. Neither the CMS nor GCS versions of the CVT table support all the
fields defined in the MVS/OS environment. Only those fields used individually
by the two VM subsystems are supported. However, the following are the two
major differences between the CMS and GCS versions of the CVT:

— The GCS version initializes its unsupported fields to X'0' values, while CMS
initializes unsupported fields to X'FFFFFFFF' values.

— The GCS version supported fields are a one-for-one match with MVS/OS
supported fields as to the intent of the field definition. CMS supported fields
may vary in some cases from the original intent of the MVS/OS definition.

* The VSE partition communications region (BGCOM) address, which is located at
X'4E0' in the CMS NUCON, is located at X'14" in the GCS NUCON.

The following fields in the BGCOM have changed for GCS:

Displacement

Field Description
X'20' The address of the VSAM anchor block minus 1
X'3B' The dump option flag, which is always set
X'8C' The flag for the GETVIS area initialized

The system communications region (SYSCOM) address, which is located at X'4E4'
in the CMS NUCON, is at X'80" in the GCS NUCON.

The following fields in the SYSCOM have changed for GCS:

Displacement
Field Description
X'2F' The XA hardware flag, which is now set

VAD Information

The VTAM/VSAM data block (VAD) supports VSAM on GCS. This data block
resides in the first 64 KB segment of private storage in the GCS nucleus, the
address of which can be found in the GCS nucleus load map. The VAD contains
key addresses and other data relevant to running of VTAM and VSAM in GCS.

170 z/VM V63 Diagnosis Guide

Debugging GCS

This includes the addresses of the VSAM and BAM segments, the addresses of the
VTAM OPEN, CLOSE, and CBMM routines, and pointers to the VSAM work areas
chain, open ACBs list, and DOSCB chain.

The VAD contains the following information:

Displacement
Field Description
X'04' The address of the first VSAM work area
X'08' The address of the start of the VSAM segment
X'10' The address of the start of the BAM segment
X'18' The address of the first DOSCB
X'1C' The addresses of the VTAM routines
X'28' The address of the VSE transient area
X'30' The address of the VSE lock table
X'34' The address of the simulated VSE TCB
X'38' The address of the VSE ppsave area
X'3C' The address of the VSE LTA save area
X'40' The number of DOSCBs in effect
X'88' The address of the list of open ACBs
X'8C' The length of the open ACBs list
X'90' The address of VSAM VSRT table

Boundary Box Usage

The boundary box (BBOX), which normally shows the bounds of the partition in
VSE, shows the bounds of a 16 MB virtual machine instead. Thus, all validity
checks made by VSE/VSAM will be successful. GCS has its own address
validation scheme, which is called before giving control to GCS/VSAM.

VSAM Anchor Block

In GCS, the anchor block contains the addresses of the VSAM dynamic assign
table, VSAM AMCB table, VSAM OAL (OPEN ACB) table, Data Compression
Services root block pointer, Data Compression Services gate word, and a reserved
area for VSAM use. It does not contain the address of modules that are
CDLOADed, and it does not mark the boundary between GETVIS storage and
partition storage, as CMS does. The VSAM anchor block is pointed to by the
BGCOM.

VTAM/VSAM Work Areas

A VTAM/VSAM work area (VIPWORK) is established for each GCS task running
VTAM/VSAM. The work areas are chained together with the newest task
VIPWORK added to the beginning of the chain. VIPWORKSs are removed from the
chain when their related tasks end.

To find the VIPWORK:

* Locate the address of the VAD in the GCS nucleus load map
* Locate the address of the first VIPWORK at VAD + X'04'

* The address of the next VIPWORK is at VIPWORK + X'50'.

The VIPWORK contains the following information:

Displacement

Field Description
X'50' The address of the next VIPWORK
X'54' The address of the previous VIPWORK

Chapter 10. Debugging GCS 171

Debugging GCS

X'58' The address of the temporary OPEN/CLOSE ACB list
X'5C' The size of the temporary OPEN/CLOSE ACB list
X'5E' The task ID

X'7E' Flags

Byte Field Description
Ixxx xxxx
PSW condition code = 0
XIxx xxxx
PSW condition code =1
xx1x xxxx
PSW condition code = 2
X'80' The save area for the caller's registers
X'BC' The VIP entry caller return address
X'FO' The DOS return code to the user

Helpful Hints for VSAM debugging

The following are GCS commands and macros you can use to get information
about the state of the system at the current time.

QUERY SYSNAMES
Displays the names of the standard saved systems or system names
established through the SET SYSNAME command.

DLBL Without any operands specified, the current file definitions that were
defined by the DLBL command are displayed.

SHOWCB
A macro that returns the fields of a specified control block within VSAM.

TESTCB
A macro that tests the values in the fields of a specified control block
within VSAM.

IDUMP
A VSAM IDUMP macro supported by GCS. GCS converts the request to an
SDUMP macro for processing.

Debugging Data Compression Errors

After expanding a string of data, you may notice unexpected characters at the end
of the string. To correct this, you must check the CMPSC_BITNUM bit in the
CMPSC_DICTADDR_BYTES3 field of the CSRYCMPS area after a call to Data
Compression Services. If this bit is on, you must add 1 to the length of the source
area before calling Data Compression Services to expand your data. To test this bit,
use a TM instruction.

Some return codes and feedback reason codes for Data Compression Services differ
between MVS/VSAM and VSE/VSAM environments. For more detailed
information on these differences, see “OS/VSAM Error Codes” in m
|Application Development Guide for Assembler| for OPEN, CLOSE, and 1/O Request
error code tables.

GCS users can find error code information in the “VSAM Data Management
Service Macros” section of the |z/VM: Group Control System}

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM
Version 6 Release 1 Commands, VSE/VSAM Version 6 Release 1 User’'s Guide and
Application Programming, and VSE/ESA Version 2 Release 1 Messages and Codes.

172 z/VM V6.3 Diagnosis Guide

Debugging GCS

An Example of Control and Data Flow in GCS

The following is an example of the flow of a VTAM command that is entered by

an application program. The diagram, shown in describes the
configuration of a sample GCS group which contains five virtual machines:

* VTAM

* RSCS

* NetView®

* An application (APPL)
* The recovery machine.

Subsystem
(VTAM)

Read/Write Storage

GCS Supervisor

VIR|N|A|R
T S|E|P|E
A|C|T|P|C
M|S| V|L|O
| Vv
E E
w R
Y

CP

Figure 13. Sample GCS Group

A problem state application (APPL), running in its own virtual machine, issues the
VTAM SEND macro. The VTAM SEND macro branches into an entry point in the
VTAM shared segment. This entry point is filled in by VTAM when the application
opened an ACB. The VTAM code, residing in the shared segment, issues the GCS
AUTHCALL macro to enter another VTAM entry point in supervisor state. Now
that the code is running in supervisor state, VTAM moves the data into common
storage and issues a GCS SCHEDEX macro to signal the VTAM virtual machine in
the group. The SCHEDEX function uses the CP signal system service to signal the
VTAM virtual machine.

When CP dispatches the VTAM virtual machine, the GCS IUCV interrupt handler
receives control to process the interrupt from the signal system service. The GCS
TUCV interrupt handler passes control to a GCS module which schedules an
asynchronous exit to run on a VTAM task, which may directly access the data in
common storage. When that task is dispatched by the GCS dispatcher, it issues a
GENIO STARTR to start the send on the virtual VTAM device. This must be done
from the VTAM virtual machine because all VTAM GENIO devices are owned by
the VTAM virtual machine. GENIO later receives a device end condition and
schedules an I/0O exit on the VTAM virtual machine, indicating the success of the
operation.

Chapter 10. Debugging GCS 173

Debugging GCS

Assuming the operation was successful and a response is required, the VTAM
virtual machine receives an attention interrupt from the GENIO device. The VTAM
virtual machine issues a GCS SCHEDEX to notify the application that issued the
SEND of the response. SCHEDEX again uses the signal system service to schedule
an exit (provided by VTAM) on the applications task that issued the SEND. The
GCS Dispatcher then runs the VTAM exit on the applications task, and the exit
informs the application through an interface provided by VTAM, completing the
cycle for that SNA SEND.

174 z/VM V6.3 Diagnosis Guide

Chapter 11. Debugging TSAF

The three ways that you can collect error information for problem diagnosis within
Transparent Services Access Facility (TSAF) are described in this chapter. They are:

» Using console logs, described in[“Using the Console Log” on page 176

. ﬁng dumps, described in [“Using TSAF Dumps to Diagnose Problems” on page|
176

* Using system trace data, described in[“Using System Trace Data to Diagnose|
[Problems” on page 179

In addition, [“Interactive Service Queries” on page 181 describes how the TSAF
QUERY command can also provide you with problem diagnosis information.

Note: The TSAF operator does not necessarily diagnose problems, especially from
the TSAF virtual machine. Dumps and system trace data are usually used by a
system programmer or whoever is responsible for diagnosing system problems.

Summary of Steps to Follow When a TSAF Abend Occurs

When a TSAF abend occurs, you should do the following:
1. Collect information about the error.

* Save the console log or spooled console output from the TSAF virtual
machine

* Save and process any dumps that TSAF produces
When an abend occurs in TSAF either because TSAF issued an abend or
because a TSAF or CMS operation caused a program exception, TSAF
produces a dump through the CP VMDUMP command described in the
[z/VM: CP Commands and Utilities Reference] CP sends the dump to TSAF's
virtual reader.

¢ Save any system TRFILE that contains TSAF data.

2. Collect other types of information about system status, such as:

* Status of real and virtual devices that TSAF is using

* System load at the time of the error on any systems using TSAF and the
status of each system (for example, did another system abend?)

* Types of applications that are using TSAF at the time and any information
about them

* Physical connection configuration of the systems in use.
3. Recover from the abend to continue processing.

After TSAF creates a dump, it issues the LOAD PSW (LPSW) instruction. If
TSAF is not invoked from the PROFILE EXEC, you must restart the TSAF
virtual machine.

/VM: Other Components Messages and Codes|lists the TSAF abend codes and their
p S
causes.

© Copyright IBM Corp. 1991, 2013 175

Debugging TSAF

Using the Console Log

TSAF provides informational messages, as well as error messages, that may help
you with problem determination. To keep track of the console messages, enter:

spool console start to userid

where userid can be the user ID of the TSAF virtual machine or another virtual
machine user ID to whom you want TSAF to send the console log. You may want
to add this to TSAF's PROFILE EXEC so that a console log is always created.

To close the console log, enter:
spool console close

The log of messages received is sent to the specified user ID. See
(Commands and Utilities Reference|for more information on the SPOOL command.

TSAF provides additional information at the time of an abend to help you
diagnose the problem. The console log contains information about the abend, such
as:

¢ Abend code
* Program old PSW

* Contents of the general purpose registers.

TSAF also attempts to determine the displacement of the module in which the
abend occurred and the displacement of the calling module.

shows some of the messages that TSAF may issue in response to an
abend condition:

ATSCAC999T TSAF system error

ATSCABO17I Abend code ATS999 at 022730

ATSCABO18I Program old PSW is FFEQO2FF 40022730

GPRO-7 00022FFC 000003E7 00022FDA 00052BCO 00208080 00020C58 0033E811 00000001
GPR8-F 7F3B78AF 603C0000 00020B64 00022D6F 50021D70 00022B48 40022718 00023FBO
ATSCABO19I Abend modifier is ATSCAC

ATSCABO21I Failure at offset OA06 in module ATSCAC dated 86.020

ATSCAB022I Called from offset 04B4 in module ATSSCN dated 86.078

ATSCABO231 VMDUMP ATSCAB*ATSCAB1 05/28/86 16:02:06 taken

Figure 14. Sample TSAF Console Log

Using TSAF Dumps to Diagnose Problems

You can use the Dump Viewing Facility to collect and diagnose problem data for
the TSAF virtual machine. The console listing, as described in[“Using the Console|
may help you diagnose problems without using dumps.

These steps describe how to use dumps to diagnose TSAF problems:

1. Create a TSAF Dump Viewing Facility map, if it does not already exist
Create the TSAF dump

Process it

Diagnose it

oo

Display it.

176 z/VM V6.3 Diagnosis Guide

Debugging TSAF

The sections that follow describe how to use the Dump Viewing Facility to
perform this process.

Creating the TSAF Map

Note: You only need to do this step when a new CMS nucleus or TSAF module is
built.

When a new CMS nucleus or TSAF module is built, enter the Dump Viewing
Facility MAP command to compress the TSAF load map:

map cmsnuc map fm tsaf map fm (tsaf

The default names for the load maps are:
* TSAF MAP for the map source file
* CMSNUC MAP for the input CMS nucleus load map

* TSAFDVF MAP for the compressed map file, which you create using the MAP
command.

Note: If you do not have the compressed map file, the power of the Dump
Viewing Facility, which allows for diagnosis with dumps, is greatly reduced. For
instance, without the map you cannot locate the TSAF modules by name.

For more information, see g/VM: Dump Viewing Faciliti}

Creating a TSAF Dump

The TSAF virtual machine creates its own dumps. The dump goes to the reader of
the TSAF virtual machine. Because the TSAF virtual machine is not set up to
process dumps, you need to transfer the dump file to the appropriate virtual
machine.

If a dump of the TSAF virtual machine is necessary and the TSAF virtual machine
did not abend, you can enter the VMDUMP command from the TSAF virtual
machine console.

#cp vmdump 0-end system format tsaf

This CP VMDUMP command will dump the issuer's virtual storage contents from
address 0 to the last address of storage and send it to the user ID designated as the
dump receiver. This user ID is specified by the DUMP operand of the
SYSTEM_USERIDS statement in the system configuration file. TSAF is the format
type of the dump. The /VM: CP Commands and Utilities Referencd has more
information about the VMDUMP command.

Processing a TSAF Dump

After the TSAF virtual machine creates a dump, load the dump onto disk. To load
the dump, enter the following command:

dumpload

After you have loaded the dump onto a disk, append the map to the end of the
dump by using the Dump Viewing Facility ADDMAP command:

addmap tsafdvf map a dumpname *

Chapter 11. Debugging TSAF 177

Debugging TSAF

See [z/VM: Dump Viewing Facility|for more information on the ADDMAP command,
and see [z/VM: CP Commands and Utilities Reference| for more information about the
DUMPLOAD utility.

Diagnosing a TSAF Dump

When you process a dump, a symptom record is generated. The symptom record
helps you find out why TSAF created the dump. The symptom record includes:

* Information about the system environment at the time of the dump
* The symptom string that contains the following component-related symptoms:
— The error code

The ID of the failing component
The ID of the failing module
The register and PSW contents.

When you use the Dump Viewing Facility DUMPSCAN command, the TSAF
symptom record extraction routine updates the symptom record. You can use a
version of the TRACE subcommand, provided specifically for TSAF, to format
TSAF trace entries.

Note: TRACE is normally available only for CP dumps.

Displaying the TSAF Dump Information

The FDISPLAY subcommand of the DUMPSCAN command displays data control
blocks, tables, and arrays important to the TSAF virtual machine. You can get
information about the following by invoking different FDISPLAY parameters:

* Path array (PATH)

* Service table (SERVICE)

* Collection control block (COLLECT)

* Resource table (RESOURCE)

* Neighbor table (NEIGHBOR)

* Routing array (ROUTING)

* Link definition array (LINKDEF)

* Link control blocks (LINKCTL with types APPC, BSC, CTCA, ELAN, TLAN).

See |z/VM: Dump Viewing Facility|for a complete listing of FDISPLAY parameters.

Formatting and Displaying Trace Records in a Dump

TSAF maintains an internal trace table within the TSAF virtual machine. You can
use the TRACE subcommand of DUMPSCAN to format and display trace records
from the TSAF internal trace table. By using the HEX or FORMAT parameters, you
can display the trace table entries in a hexadecimal display or a formatted display.

You can scroll back and forth through the formatted or hexadecimal output by
using the DUMPSCAN subcommands FORWARD and BACKWARD.

Printing a TSAF Dump

If you want a listing of the dump, you can print one. The Dump Viewing Facility
PRTDUMP command prints the dump and symptom record that DUMPLOAD
processed. The output you get consists of the following:

* A symptom record
* A dump in hexadecimal (no special formatting)

178 z/VM V6.3 Diagnosis Guide

Debugging TSAF

* Appended load maps
* Contents of the registers and the PSW.

See [z/VM: Dump Viewing Facility|for more information on the PRTDUMP
command.

Because of the recommended size of the TSAF virtual machine, the dump could be
quite large.

Using System Trace Data to Diagnose Problems

While maintaining an internal trace table, the TSAF virtual machine can write trace
entries to the system TRFILE. You can use the Dump Viewing Facility to format
and display these trace table entries.

Setting External Tracing

The TRSAVE command specifies where you want to save the data. The
TRSOURCE command controls the collection of the TSAF information. This
information helps with problem determination. The TSAF SET ETRACE command
lets you enable or disable external tracing for the TSAF virtual machine. You can
trace data on specific links to the TSAF virtual machine. You can also trace data for
other virtual machines (user IDs) that have established an APPC/VM path through
the TSAF virtual machine.

To be sure that all trace data is recorded, enter the TRSOURCE command before
issuing the SET ETRACE command. The users who enter the TRSOURCE
command must have a Class C privilege user ID. In many locations, the TSAF
virtual machine does not have the privilege class to issue the TRSOURCE
command. For this reason, you may need to enter the command from another
virtual machine that has authority to do so. ’

To activate TRSOURCE for TSAF records only and to pass blocks of trace data to
CP, enter:

trsource id tsafid type gt block for user userid
trsave for id tsafid
trsource enable id tsafid

tsafid is the trace identifier, and userid is the TSAF virtual machine user ID.

To activate TRSOURCE for TSAF records only and to pass individual records to
CP, enter:
trsource id tsafid type gt event for user userid

trsave for id tsafid
trsource enable id tsafid

After you have entered the TRSOURCE command, you can begin to collect TSAF
trace records. Enter the following from the TSAF virtual machine console:

set etrace on

When you set external tracing on, certain internal TSAF trace records are written
externally to a system trace file (TRFILE). A complete description of the SET
ETRACE command is in [z/VM: Connectivity}

7. Privilege class is defined in the directory entry for the user ID.

Chapter 11. Debugging TSAF 179

Debugging TSAF

To end TSAF trace record generation, enter:
set etrace off

To end TRSOURCE processing, enter:
trsource disable id tsafid

When you enter this command, the output data is stored as a system trace file
(TRFILE).

To delete the trace ID, enter:
trsource drop id tsafid

For more specific information about the TRSOURCE and TRSAVE commands, see
k/VM: CP Commands and Utilities Referencd

Viewing TSAF Trace Entries

You can use the CP TRACERED utility to format and print or view the trace
entries. The DUMPSCAN command displays the external trace entries. In order to
use the TRACE subcommand, the TSAF trace formatting routines must be on an
accessed disk.

For information about the TRACERED utility, see k/VM: CP Commands and Utilities|

For information about the DUMPSCAN command and the TRACE subcommand,
see [z/VM: Dump Viewing Facility|

Trace Table Entry Format for TSAF

The trace table entries vary in length and follow the format described below. The
length fields are 2 bytes long and may be any number from 0 to 32767. The length
and data fields are optional data fields.

A trace table entry looks like the following:

| length(1) | data(1) | | length(n) | data(n) | Trailer record

The trailer record format looks like the following:

Clock (STCK format) |Characters 4 through |Trace ID Data area X'EOOE'
6 of module name code length

The lengths associated with these fields are:

* Clock (STCK format)—8 bytes

* Characters 4 through 6 of module name—3 bytes
* Trace ID code—2 bytes

e Data area length—2 bytes

* ‘EOOE’x—2 bytes.

Note: Module entries and module exits do not have length fields associated with
each data field. Module entries and exits do, however, have the data area length in
the trailer record.

180 z/VM V6.3 Diagnosis Guide

Debugging TSAF

Module entry trace records appear only in the internal trace table. TSAF identifies
these records by setting bit 15 of the trace identifier code to 1. The data for a
module entry is in the parameter list used during the module call.

Module exit trace records also appear only in the internal trace table. TSAF
identifies these records by setting bit 14 of the trace identifier code to 1. The data
for a module exit is in registers 14 and 15 at the time of the module exit.

Interactive Service Queries

The TSAF QUERY command, issued from the TSAF virtual machine, can give you

more information to help you diagnose problems. The TSAF QUERY command

gives you data about the TSAF configuration when the TSAF virtual machine is

running:

* QUERY COLLECT displays the processor names that are currently in the TSAF
collection.

* QUERY ETRACE displays the current setting of the external tracing.

* QUERY GATEWAY displays the current list of gateways defined in the TSAF
collection.

* QUERY LINK displays information about the links that TSAF currently has
including the neighboring processor name that the link is connected to.

* QUERY RESOURCE displays the current list of global resources in the collection.

* QUERY ROUTE displays the route information at the node where the command
was issued.

* QUERY STATUS displays the current information about the correlation of other
TSAF virtual machines in the collection.

See [z/VM: Connectivity| for more specific information about the TSAF QUERY
command.

Chapter 11. Debugging TSAF 181

182 z/VM V63 Diagnosis Guide

Chapter 12. Debugging AVS

Effective problem diagnosis for APPC/VM VTAM Support (AVS) is a process
consisting of:

e Analyzing the dump

* Analyzing system trace data

¢ Using the AVS QUERY command
* Receiving an AVS abend response.

Each of the above steps will be addressed individually.
Note: The AVS operator does not always diagnose problems. In fact, dumps and

system trace data are often handled by a system programmer or other person
specifically responsible for diagnosing system problems.

Using AVS Dumps to Diagnose Problems

The Dump Viewing Facility analyzes dumps and tracks problems in z/VM. You
can use the Dump Viewing Facility to collect and diagnose problem data for the
AVS virtual machine. Because AVS runs in a GCS group, you can use all GCS and
AVS subcommands of DUMPSCAN.

The steps used to diagnose problems using dumps are:
1. Obtain a GCS load map, if one doesn't already exist
2. Obtain the AVS dump

3. Process the AVS dump

4. Use DUMPSCAN to diagnose the AVS dump.

Obtaining the GCS Load Map

Note: This step is not necessary every time you create a dump; however, it is
required when a new GCS nucleus is built.

When you build a new GCS nucleus, enter the MAP command of the Dump
Viewing Facility to compress the GCS load map into a format that the Dump
Viewing Facility can use:

map gcsnuc map fm (gcs

The default map file is GCSDVF MAP. See k/VM: Dump Viewing Facility|for more
information on the MAP command.

If you do not have the GCS load map, the GCS subcommands for the DUMPSCAN
command are affected. The AVS subcommands for the DUMPSCAN command are
unaffected.

Creating an AVS Dump

When a problem occurs because of an abend, or when an abnormal condition is
detected, AVS produces one of the following:

¢ A dump when AVS abends

© Copyright IBM Corp. 1991, 2013 183

Debugging AVS

* A problem dump when the system detects an error but does not cause AVS to
abend.

The problem dump takes a snapshot of the system to try to capture the problem.
An informational message appearing at the operator console corresponds to a
message number generated with the problem dump report. DIAGNOSE code X'94'
(VMDUMP) is used to take the problem dump.

The maximum number of AVS problem dumps that can be taken during each AVS
session is determined by the value set for MAXPROBD in the AGWTUN
ASSEMBLE file. The default is 20. This, and other IBM-supplied default values
contained in AGWTUN ASSEMBLE can be changed by a system programmer. For
information about modifying this file, see [z/VM: Connectiviti}

If you want to create a dump for the AVS machine, enter:
gdump 0-end format avs dss

This Group Control System GDUMP command will dump the issuer's virtual
storage contents, from address 0 to the last address of virtual storage, and send it
to the issuer's virtual reader. AVS is the format type of the dump. The dump will
also include any discontiguous saved segments that the virtual machine may be
using. lz/VM: Group Control System|contains more information about the GDUMP
command.

Processing an AVS Dump

To load any AVS virtual machine dump directly onto a disk, enter:
dumpload

After you have loaded the dump onto the disk, append the map to the end of the
dump by using the Dump Viewing Facility ADDMAP command:

addmap gcsdvf map a dumpname *

See [z/VM: Dump Viewing Facility|for more information on the ADDMAP command,
and see |z/VM: CP Commands and Utilities Reference| for more information about the
DUMPLOAD utility.

Diagnosing an AVS Dump

When you process a dump, a symptom record is generated. The symptom record
helps you discover why AVS created the dump. The symptom record includes:

* Information about the system environment at the time of the dump
* The symptom string that contains the following component-related symptoms:
The error code

The ID of the failing component
The ID of the failing module
Register and PSW contents.

When you use the Dump Viewing Facility DUMPSCAN command, the AVS
symptom record extraction routine updates the symptom record. You can use a
version of the TRACE subcommand, provided specifically for AVS, to format AVS
trace entries.

184 z/VvM ve3 Diagnosis Guide

Debugging AVS

Displaying the AVS Dump Information with DUMPSCAN

The GDISPLAY subcommand of DUMPSCAN displays data control blocks and
addresses important to the AVS virtual machine. You can get information about the
following by invoking different GDISPLAY parameters:

* Conversation block (CVB)

* Global control block (GCB)

* Gateway block (GWB)

* Gateway parameters (GWBPTRS)
* Module names (MAPA)

* Module addresses (MAPN)

* Remote LU block (RLU)

* Subtask control block (SCB)

* Scheduling global block (SGB).

Because AVS runs in a GCS group, you can use other DUMPSCAN subcommands
to further examine these parts of the AVS dump:
IUCV All entries in the IUCV path table.

TACTIVE
The task's active program list.

TLOADL
The task's load list.

TSAB The subpool map and chain header of a task.

VMLOADL
Information about all programs loaded in this virtual machine.

See [z/VM: Dump Viewing Facility|for more information.

Formatting and Displaying Trace Records in a Dump

AVS maintains an internal trace table within the AVS virtual machine. You can use
the TRACE subcommand of DUMPSCAN to format and display trace records from
the AVS internal trace table. By using the HEX or FORMAT parameters, you can
display the trace table entries in a hexadecimal display or a formatted display. See
k/VM: Dump Viewing Facility] for examples of using the TRACE subcommand and
the sample outputs.

You can scroll back and forth through the formatted or hexadecimal output by
using the DUMPSCAN subcommands FORWARD and BACKWARD.

Using System Trace Data to Diagnose Problems

While maintaining an internal trace table, the AVS virtual machine can also write
trace entries to the system trace file (TRFILE). You can use the Dump Viewing
Facility to format and display these trace table entries.

Setting Internal Tracing

When the AGW START command is entered, internal tracing is set as if you
entered an AGW SET ITRACE ALL ON command. Internal tracing information is
written to an internal wraparound table in the AVS virtual machine.

Chapter 12. Debugging AVS 185

Debugging AVS

See the description of the AGW SET ITRACE command in [z/VM: Connectivity| for
information about tracing events for a gateway or for stopping and restarting
tracing.

Setting External Tracing

The TRSAVE command specifies where you want to save trace information. The
TRSOURCE command controls the collection of the data. This information helps
with problem determination. The AGW SET ETRACE command lets you enable or
disable external tracing for the AVS virtual machine. External tracing will not be in
effect unless you also have internal tracing set on. The type of external tracing you
receive will be the same as the type of internal tracing you requested. To be sure
that all trace data is recorded, enter the TRSOURCE command before issuing the
AGW SET ETRACE command. The users who enter the TRSOURCE command
must have a class C privilege user ID. Because the AVS virtual machine is not set
up to diagnose problems, only one authorized user at a time may enter the
TRSOURCE command. ®

To activate TRSOURCE for AVS records only and to pass blocks of trace data to
CP, enter:

trsource id avsid type gt block for user userid
trsource enable id avsid

avsid is the trace identifier, and userid is the AVS virtual machine user ID.

To activate TRSOURCE for AVS records only and to pass individual records to CP,
enter:

trsource id avsid type gt event for user userid
trsource enable id avsid

After you have entered the TRSOURCE command, you can begin to collect AVS
trace records. Enter the following from the AVS virtual machine:

etrace gtrace
agw set etrace on

When you have internal and external tracing set on, AVS trace records are written
externally to a system trace file. The ETRACE command is described in
(Group Control System], A complete description of the AVS SET ETRACE command is
in |g/VM: Connectivity|

To end TRSOURCE processing, enter:
trsource disable id avsid

When you enter this command, the output data is stored as a system trace file
(TRFILE). For more specific information about the TRSOURCE command, see
k/VM: CP Commands and Utilities Referencd,

Viewing AVS Trace Entries

You can use the CP TRACERED utility to format and print or view the trace
entries. The DUMPSCAN command also displays the external trace entries. In
order to use the TRACE subcommand, the AVS trace formatting routines must be
on an accessed disk.

8. The privilege class is defined in the directory entry for the user ID.

186

z/VM V6.3 Diagnosis Guide

Debugging AVS

For information about the DUMPSCAN command and the TRACE subcommand,
see [z/VM: Dump Viewing Facility|

For information about the TRACERED utility, see g/VM: CP Commands and Utilities|

Trace Table Entry Format for AVS

AVS trace table entries vary in length and follow the format described below. The
length fields are 1 byte long and may contain any number from 0 to 236. An AVS
trace entry cannot exceed 255 bytes. The length and data fields are optional. A
trace entry table looks like the following:

| length(1) | data(1) | | length(n) | data(n) | Trailer record

The trailer record format looks like the following:

Clock (STCK format) |Characters 4 through | Trace ID Data area X'EOOE'
6 of module name code length

The lengths associated with these fields are:

* The clock (STCK format)—8 bytes

* Characters 4 through 6 of the module name—3 bytes
* The trace ID code—2 bytes

* The data area length—2 bytes

* X'EOOE'—2 bytes.

Getting Information about Trace Entries
You can use the CP QUERY command to obtain information about traces and trace
entries. For example,

* QUERY TRFILES displays detailed information about one or more system trace
files and counts the number of files that match your specified criteria.

* QUERY TRSAVE displays the destination of the traces.
¢ QUERY TRSOURCE displays the status of traces defined by TRSOURCE.

For information about the QUERY command, see g/VM: CP Commands and Utilities|

Interactive Service Queries

The AVS QUERY command provides information about the operating AVS virtual
machine.

* AGW QUERY ALL displays all of the current information about various settings
and conditions of AVS.

* AGW QUERY CNOS displays the contention winner/contention loser
information for the gateways.

* AGW QUERY CONYV displays information about the current conversations.
* AGW QUERY ETRACE displays the current setting of the external tracing.

¢ AGW QUERY GATEWAY displays the status of all gateways that are currently
in the collection.

* AGW QUERY ITRACE displays the current setting of the internal tracing.

Chapter 12. Debugging AVS 187

Debugging AVS

* AGW QUERY USERID displays the remote LU, remote user ID, and local user
ID.

See [z/VM: Connectivity|for more information about this command.

Summary of Steps to Follow When an AVS Abend Occurs

188

When an AVS abend occurs, follow these procedures:
* Collect information about the error.

— Print the console log for the time that the error occurred. Save the console
sheet or spooled console output from the AVS virtual machine.

— Save and process any dumps that AVS produces.

— Enter the MAP command to convert the GCS load map to a format that
allows the Dump Viewing Facility to append the GCS load map to the dump.

— Use the DUMPLOAD utility to load the dump from a reader spool file into a
CMS dump file.

- Enter the ADDMAP command to append the load map to the dump.

— Enter the DUMPSCAN command with the necessary subcommands to look at
the contents of the dump.

— Save any trace files that contains AVS data (described in [‘Using System Trace]
[Data to Diagnose Problems” on page 185).

* Collect system status information. The following information can help better
determine problems:

— The system load at the time of failure on any systems using AVS and the
status of each system (for example, did another system abend?).

— The types of applications that are using AVS at the time, and any information
about them.

— The physical connection configuration of the systems in use.

* Recover from the abend to continue processing.

— When an abend occurs in AVS, either because AVS issued an ABEND or
because an AVS or GCS operation caused a program exception, AVS produces
a dump by way of DIAGNOSE code X'94' (described in [z/VM: CP,
[Programming Services).

z/VM: Other Components Messages and Codes| lists the various AVS abend codes and
their causes.

z/VM V6.3 Diagnosis Guide

Appendix A. Problem-Specific Checklists

After you determine the general nature of your problem, find the checklist
associated with that problem. Then, collect the information stated in the checklist
before you call IBM.

CP Abend Checklist

Collect the following information before calling IBM:

No oo bkowbd =

The last action performed by CP before the abend occurred

Any output generated that demonstrates the problem

Any messages and return codes received

A CP restart or snapdump

A CP abend dump

A CP nucleus loadmap

If possible, the program label or the address at which the abend occurred.

CMS Abend Checklist

Collect the following information before calling IBM:

No o~ =

The last action performed by CMS before the abend occurred

Any output generated that demonstrates the problem

Any messages and return codes received

At a minimum, the contents of the PSW and the general and control registers
A dump of the virtual machine containing CMS

A CMS nucleus loadmap

If possible, the program label or the address at which the abend occurred.

GCS Abend Checklist

Collect the following information before calling IBM:

1.

SISEE R

The identity of the virtual machine in the GCS virtual machine group that
experienced the abend

A dump of the virtual machine that terminated abnormally

Any output generated that demonstrates the problem

Any messages and return codes received

A GCS nucleus loadmap

If possible, the program label or the address at which the abend occurred.

RSCS Abend Checklist

Collect the following information before calling IBM:

1.

2.
3.
4.

The last action performed before the abend in RSCS occurred
Any messages and return codes received

The RSCS console log

An RSCS abend dump

© Copyright IBM Corp. 1991, 2013 189

Problem-Specific Checklists

5. The RSCS nucleus loadmap (RSCS Version 1)
6. The RSCS link edit map (RSCS Version 2 or higher)
7. 1If possible, the program label or the address at which the abend occurred.

CP Wait State Checklist

Collect the following information before calling IBM:

1. The last action performed by CP before the wait state occurred
2. A CP restart or standalone dump

3. Any output generated that demonstrates the problem

4

. The contents of the PSW. (Take particular note of the last word of the PSW. A
CP wait state code might be stored there.)

o

The contents of the general registers

12

A copy of the CP internal trace table. (This accompanies the dump.)
7. If available, the wait state code.

Virtual Machine Wait State Checklist

Collect the following information before calling IBM:

The last action performed by the virtual machine in question
Any output generated that demonstrates the problem

Any messages and return codes received

The contents of the PSW

The contents of the general and control registers

The contents of the CSW. (Take particular note of CSW bits 32 through 47
where input/output device conditions might be noted.)

ook~ wn =

N

A dump of the virtual machine in question

©

If available, the wait state code.

RSCS Wait State Checklist

Collect the following information before calling IBM:
1. The last action performed by the virtual machine in question
2. Any output generated that demonstrates the problem

Any messages and return codes received

The contents of the PSW

The contents of the general and control registers

The contents of the CSW. (Take particular note of CSW bits 32 through 47
where input/output device conditions might be noted.)

7. A dump of the RSCS virtual machine

8. The RSCS console log

9. The RSCS nucleus loadmap (RSCS Version 1)
10. The RSCS link edit map (RSCS Version 2 or higher)
11. If available, the wait state code.

o ok~ w

190 z/VM V6.3 Diagnosis Guide

Problem-Specific Checklists

Application Program checklist for Unexpected Output

Collect the following information before calling IBM:

1.

Documentation associated with the application program

2. Input to the program

3. The job control statements (JCL) included with the program.

Checklists for Performance Problems

Collect the following information before calling IBM.

An Infinite Loop in CP

Collect the following information before calling IBM:

N o oD~

Any console or printed output that demonstrate the problem

A CP restart dump

The contents of the PSW

The contents of the general and control registers

The contents of storage locations from hexadecimal addresses 00 through 100
If possible, the instructions (and their addresses) that are involved in the loop

A CP nucleus loadmap—particularly the names of the modules involved in the
loop.

An Infinite Loop in a Virtual Machine
Collect the following information before calling IBM:

1.
2.
3.
4.

Any output generated that demonstrates the problem
A dump of the virtual machine in question
A CMS nucleus loadmap

If possible, the instructions (and their addresses) that are involved in the loop.

An Infinite Loop in RSCS

Collect the following information before calling IBM:

N o oo s~ -~

Any output generated that demonstrates the problem

The RSCS nucleus loadmap (RSCS Version 1)

The RSCS link edit map (RSCS Version 2 or higher)

The RSCS console log

A trace of activity in the RSCS virtual machine

If possible, the name of the RSCS module involved

If possible and if applicable, the name of the RSCS link or line driver involved.

Hardware Failure
Collect the following information before calling IBM:

1.
2.

Any messages and return codes received
The hardware error record.

Inadequate System Parameters

Collect the following information before calling IBM:

1.

Normal system parameter readings

Appendix A. Problem-Specific Checklists 191

Problem-Specific Checklists

2. Present system parameter readings
3. The configuration of your system's input/output devices.

192 z/VM V63 Diagnosis Guide

Appendix B. GCS Control Blocks

This appendix describes the layouts of some GCS control blocks and important

fields that help you identify problems in a VM/SNA environment. The information

that is provided is enough to allow you to display the GCS areas that may be

relevant when determining the source of a problem.

This appendix describes the format and layout of:

NUCON

The GCS nucleus constant area (Table 5

SIE The NUCON extension (Table 6 on page 197)
TBK The task block (Table 7 on page 199)

STBLK
The state block (Table 8 on page 201)

SMAB
The storage management block (Table 9 on page 203)

ANCH
The storage anchor block (Table 10 on page 205)

EXTWA
The external interrupt handler work area (Table 11 on page 206)

SVCWA
The SVC interrupt handler work area (Table 12 on page 206)

PGMWA
The program interrupt work area. (Table 13 on page 207)

VMCB
The virtual machine control block (Table 14 on page 207)

In all the descriptions, the field lengths are shown in hexadecimal.

NUCON — GCS Nucleus Constant Area

Table 5. Contents of the GCS Nucleus Constant Area (NUCON)

HEX

DISP LENGTH DESCRIPTION

000 NUCON 1880 The nucleus constant area

000 NUCIPPSW 8 The initial program loading PSW

000 NUCRNPSW 8 The RESTART new PSW

008 NUCROPSW 8 The RESTART old PSW

010 NUCADCVT 4 The address of the OS CVT

014 NUCBGCOM 4 The address of BGCOM

018 NUCEOPSW 8 The external old PSW

020 NUCSOPSW 8 The SVC old PSW

022 NUCSOBT2 1 Byte 2 of PSW
NUCSOAS1 X'80' The first address space control bit
NUCSOAS2 X'40' The second address space control bit

024 NUCSOADR 4 The XA SVC instruction address

© Copyright IBM Corp. 1991, 2013

193

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX
DISP NAME LENGTH DESCRIPTION

NUCSOA31 X'80' The AMODE SVC old PSW
028 NUCPOPSW 8 The program-check old PSW
030 NUCMOPSW 8 The machine-check old PSW
038 NUCIOPSW 8 The 1/0 old PSW
04C NUCACVT2 4 The CVT address for dump routines
054 NUCTRACE 4 The address of the table trace header
058 NUCENPSW 8 The external new PSW
060 NUCSNPSW 8 The SVC new PSW
068 NUCPNPSW 8 The program-check new PSW
070 NUCMNPSW 8 The machine-check new PSW
078 NUCINPSW 8 The I/O new PSW
080 NUCSYSCM 4 Used by VSAM
084 2 Reserved—set to zero
086 NUCEICOD 2 The external interruption code
088 1 Reserved—set to zero
089 NUCSVILC 1 The SVC ILC (XA and XC virtual machine)
08A NUCSVCN 2 The SVC interruption code (XA or XC virtual machine
08C 1 Reserved—set to zero
08D NUCPIILC 1 The program-check ILC

NUCPILC1 X'04' The program instruction length bit 1

NUCPILC2 X'02' The program instruction length bit 2
08E NUCPICOD 2 The program interruption code
090 NUCTE 4 The page fault address
090 NUCTEA 1 Reserved—set to zero

NUCTEAC X'80' The page fault is complete
091 NUCTEAA 3 The translation exception address
094 1 Reserved—set to zero
095 NUCMCNUM 1 The Monitor CALL class number
096 NUCPERCD 1 The program event recorder code
097 1 Reserved—set to zero
098 NUCPER 1 Reserved—set to zero
099 NUCPERAD 3 The program event recorder address
09C NUCEID 4 The MONITOR-CALL EID
09D NUCMTRCD 3 The MONITOR-CALL code
0A0 NUCEXAID 1 The exception access ID
0A8 NUCMCKLA 8 The machine-check LOGOUT area
0A8 NUCTXCP 4 The exception alet
0A8 NUCCHNID 4 The channel ID
0AC NUCIOEL 1 Reserved for future use
AD NUCIOELA 3 The I/0 extended LOGOUT pointer
0BO NUCLCL 4 The limited channel LOGOUT (ECSW)
0B8 NUCIOSID 4 The SID causing I/O interrupt
0B8 NUCIOSTY 2 The SID type
0BA NUCIOAA 2

The 1/0O device causing interrupt
The 1/0O subchannel causing INTR

0BC NUCINTP 4 The interrupt parameter
0Co LOWSAVE 96 The save area for the first 96 bytes of storage
0E8 NUCMCIC 8 The machine check interrupt code
0E8 NUCMCICO 1 MCIC byte 0
0E9 NUCMCIC1 1 MCIC byte 1
194 2/VM V6.3 Diagnosis Guide

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX
DISP NAME LENGTH DESCRIPTION
NUCMCCP X'40' X1XX = channel report pending
OEA NUCMCIC2 1 MCIC byte 2
OEB NUCMCIC3 1 MCIC byte 3
OEC NUCMCIC4 1 MCIC byte 4
0ED NUCMCIC5 1 MCIC byte 5
OF8 NUCFSA 4 The failing storage address
100 NUCASIT 8 The failing storage asit
120 NUCACRLG 64 The access register save area
160 NUCFPRLG 32 The floating point register save area
180 NUCGPRLG 64 The general purpose register save area
1C0 NUCECRLG 64 The extended control register save area
200 NUCVTAM 4 Reserved for VTAM
204 NUCVMID 8 The virtual machine user ID
20C NUCLVL 4 The release/service level
20D NUCRLVL 1 The release level
20E NUCSLVL 2 The service level
210 NUCIDS 4 The signal ID/task ID
210 NUCSIGID 2 This virtual machine signal ID
212 NUCATID 2 The active task ID
214 NUCATB 4 The address of the active task
218 NUCPOST 4 The branch entry address for the post
21C NUCCTB 4 The common trace block pointer
220 NUCNPM 4 The network performance monitor
224 NUCSTOR 4 The address of common storage data
228 NUCZIT 4 The start of private storage (dump viewing facility use
only)
22C NUCAGW 4 The AGW RAS use
230 NUCVMPST 4 Reserved for VTAM
234 NUCUSER 4 Reserved for VTAM
238 NUCSAF 4 Reserved for RACF®
23C NUCDUMP 4 Pointer to the dump receiver
240 NUCANCH 4 The pointer to the user anchor table
244 NUCFLAGS 1 FLAGS
NUCXCMDE X'80' XC Virtual Machine
NUCHWCMP X'40' Hardware Compression
28C NUCFEIBM 12 The component ID-dump viewing facility referenced
298 NUCABW 4 The address of the abend work area (for the dump
viewing facility)
29C NUCRSTS1 4 The system restart save area
2A0 NUCRSTS2 4 The system restart save area
2A4 NUCRSTF 1 The system restart flags
NUCMSGR X'02' The recursion bit (message facility)
NUCRSTR X'01' The recursion bit (restart)
2A5 3 Reserved
2A8 NUCBLRSV 64 The register save area
2E8 NUCCMDLN 160 The command input line
388 NUCCMLST 536 The tokenized PLIST
5A0 NUCUPPER 4 The upper case translate table
5A4 NUCPLFID 4 The flag word used by GCTSCN
5A4 NUCPLSWT 1 The 1-byte switch used in GCTSCN
5A8 NUCCWR 4 The console write routine

Appendix B. GCS Control Blocks 195

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX

DISP NAME LENGTH DESCRIPTION

5AC NUCACPF 4 The CP command PASSTHRU

5B0 NUCSCANN 4 The scan routine entry point

5B4 NUCSCNT 4 The scan routine entry point

5B8 NUCPLIST 8 The extended PLIST (untokenized)

5B8 NUCPLCMD 4 The address of the command token

5BC NUCPLBEG 4 The address of the start of argument string

5C0 NUCPLEND 4 The address of the end of argument string

5C4 NUCSIE 4 The pointer to the SIE (NUCON extension)

5C8 NUCIHCSA 8 The interrupt handler common save area

5D0 NUCSAVQI1 4 The header pointer for the interrupt handler save area

5D4 NUCSAVQ2 4 The trailer pointer for the interrupt handler save area

5D8 NUCSRPTR 4 The pointer to the system restart work area

5DC NUCDEB 4 The DEB entry to the chain address

5E0 NUCCBLKS 4 The pointer to modules known to program

management

5E4 4 A restricted field

650 NUCFCBTB 8 The FCB anchor chain

650 NUCFCB1 4 The address of the first FCB

654 NUCFCBNM 2 The number of FCBs in the chain

658 NUCLAF 4 V(GCTLAF) AACTLKP

65C NUCERS 4 V(GCTERS) AERASE

660 NUCSTTN 4 V(GCTSTT) AESTATE

664 NUCENS 4 V(GCTENS) AFINIS

668 NUCFVS 4 V(FVS) AFVS

66C NUCAUD 4 V(GCTAUD) AUPDISK

670 NUCRDBUF 4 V(GCTRWBRD) GCTRWBRD

674 NUCDEVTB 4 V(DEVTAB) the address of DEVTAB

678 NUCADTS 4 V(ADTSECT) the address of ADTSECT

67C NUCDIODA 4 V(DIOSECT) the address of DIODA

680 NUCAFTS 4 V(AFTSTART) the address of AFTSTART

688 NUCTODCA 16 The timing information

688 NUCTODTT 8 The total virtual machine time

690 NUCTODDT 8 The time of day when dispatched

6A0 NUCLLNAM 4 The address of the LOADLIB name list

6A4 NUCLLDIR 4 The address of the LOADLIB directory list

6A8 NUCLLSIZ 4 The size of the LOADLIB name and directory storage

6AC NUCLLNUM 2 The number of globaled LOADLIBs

6B0 NUCXAWRK 4 The XA-mode work area

6B0 NUCMFLAG 1 The nucleus machine flag:
NUCXA X'80' IXXXXXXX = Virtual machine is XA or XC
NUCDMPON X'40' IXIXXXXX = Dump on switch
NUCDMPDE X'20' XXIXXXXX = Dump default switch
NUCLCKHO X'10' XXXIXXXX = Hold common lock for dump
NUCIPOLL X'08' XXXX1XXX = IPOLL function in use
NUCNOPLL X'04' XXXXX1XX = IPOLL buffer in use
NUCDMPFEM X'02' XXXXXX1X = Dump format switch
NUCSGRP X'01' XXXXXXX1 = Single user group

6B1 NUCMASKE 1 The system enable byte

6B2 NUCMASKW 1 The STNSM/STOSM work byte

6B4 NUCLINE 4 The start of high storage

6B8 NUCAMDS0 4 Used by GCTAMODE

196 z/VM V6.3 Diagnosis Guide

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX

DISP NAME LENGTH DESCRIPTION

6BC NUCAMD7ZF 4 Used by GCTAMODE

6C0 NUCMCKSA 64 The machine check work area

700 NUCGLUSA 64 The glue work area

740 NUCBESAV 4 The work area

744 NUCBER14 4 Register 14 from the branch entry
NUCBEA31 X'80' The branch entry was in AMODE 31

748 NUCFLGS 4 Flags
NUCREX31 X'80' REXXSTOR = 31

750 NUCPFPSW 8 The PSW at page fault interruption

SIE — NUCON Extension

Table 6. Contents of the NUCON Extension (SIE)

HEX

DISP NAME LEN DESCRIPTION

000 SIE 328 The NUCON Extension

000 8 Eye catcher (GCTSIE)

008 SIETRQ 4 The timer request queue start

00C SIEQCB 4 The ENQ control block queue start

010 SIETTBL 4 The address of the task ID table

014 SIETBQ 4 The address of the first task block in the dispatch

queue

018 SIEAEQ 4 The address of the asynchronous exit queue

01C SIESCB 4 The pointer to the STAE control block pool

020 SIELKCOM 4 The address of the common storage lock

024 SIELKTID 2 The task ID waiting for the lock

026 SIELOCKB 1 The byte indicating whether the machine
SIELKCMB X'80' is waiting for the lock

027 SIEPM 1 The program management flag byte
SIEPMGLB X'80' Set on when the global LOADLIB command is issued
* Set off when the BLDL searches the directories
SIEPMOSR X'40' Set on when OSRUN is active
* Set off by LINK
SIEPMLDR '20' Set on by GCTLOS for LOADADDR

028 SIEVMCBS The address of the VMCB array

02C SIEVMCB The address of this machine's VMCB

030 SIESYSNM The pointer to the VSAM SYSNAMES table

034 SIEPOST The branch entry to POST

038 SIEGETM The branch entry point to GETMAIN

03C SIEFREM The branch entry point to FREEMAIN

044 SIECAADR The address of the attention interrupt ECB

048 SIECIADR The address of the I/O complete ECB

04C SIECOADR The address of the console output pending ECB
050 SIECTADR The address of the command tack ECB

054 SIECAECB The attention interrupt ECB

058 SIECIECB The I/O complete ECB

05C SIECOECB The output pending ECB

X

4

4

4

4

4

4

040 SIESMAB 4 The pointer to the SMAB
4

4

4

4

4

4

4

060 SIECTECB 4 The command task ECB

Appendix B. GCS Control Blocks 197

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX
DISP NAME LEN DESCRIPTION
064 SIECONFL 1 The console task flags
SIECRDIO Ixxx xxxx A READ I/0O is in progress
SIECWRIO XXX XXXX A WRITE I/0O is in progress
SIECATTP XXX XXXX The attention pending bit
SIECOUTP xxx1 Xxxx The output pending bit
SIECLEAR XXXX Ixxx Clear screen
065 SIECMDFL 3 Reserved command flags
068 SIEFCMDQ 4 The pointer to the first command input buffer
06C SIELCMDQ 4 The pointer to the last command input buffer
070 SIEFSWQE 4 The pointer to the first WQE buffer on the queue
074 SIELSWQE 4 The pointer to the last WQE buffer on the queue
078 SIEFSORE 4 The pointer to the first ORE buffer on the queue
07C SIELSORE 4 The pointer to the last ORE buffer on the queue
080 SIECCWS 16 Console CCWS
080 SIECCW1 8 The first CCW
080 SIECCW1C 1 The CCW command code
081 SIECCWIA 3 The data address
084 SIECCWIF 1 A flag byte
085 SIECCWIN 1 An unused flag byte
086 SIECCW1B 2 The byte count
088 SIECCW2 8 The second CCW
088 SIECCW2C 1 The CCW command code
089 SIECCW2A 3 The data address
08C SIECCW2F 1 A flag byte
08D SIECCW2N 1 An unused flag byte
08E SIECCW2B 2 The byte count
090 SIEIDORE 13 The bit string for ORE IDs
09D SIELSTID 1 The last ID used for assigning
09E 2 Reserved
0A0 SIETAB 4 The trace anchor block pointer
0A4 SIENUCX 4 The pointer to the nucleus extension control block
chain
0A8 SIEBVSAM 4 The beginning of the VSAM shared segment
0AC SIEEVSAM 4 The end of the VSAM shared segment
0BO SIEBBAM 4 The beginning of the BAM shared segment
0B4 SIEEBAM 4 The end of the BAM shared segment
0B8 SIEIUCAB 4 The IUCV anchor block
0BC SIESSPTH 2 The signal services path (path ID)
OBE RESERVED 2 Reserved
0Co SIEFREST 4 The start of available common free storage
0C4 SIEZNR 4 The start of available private free storage
0C8 SIEVMSIZ 4 The size of this virtual machine
0CC SIETQE 4 The address of the TQE pool
0D0 RESERVED 4 Reserved for future use
0D4 SIEIFLAG 1 Initialization flags
SIEPGFT X'80' Page faults initialized
SIEAUSER X'02' ON means the virtual machine is authorized
0D5 SIETIME 8 The system save time
0DD SIEDATE 8 The system save date
0E5 SIECRIT 1 Critical bits
SIESMGMT X'80' Storage management
198 2/VM V6.3 Diagnosis Guide

Table 6. Contents of the NUCON Extension (SIE) (continued)

GCS Control Blocks

HEX
DISP NAME LEN DESCRIPTION
SIESTERM X'40' System termination
SIEINIT X20' Initialization
SIESVC X'10' SVC handler
SIEFSACC X'08' File system
SIEFSERS X'04' File system
SIEFSENS X'02' File system
SIEFSWRB X'01' File system
0E8 SIEREDRN 4 The highest ready task level
0EC SIEDSP 1
SIEDSTOP X'80' The priority change bit
0F0 SIESLICE 8 The time slice in microseconds
0F8 SIESDXBR 4 “V(GCTSDXBR)” branch entry to SCHEDEX
OFC SIESAV 4 “V(GCTSAR)” save area for branch entry
100 SIEIUS 4 “V(GCTIUSBR)” branch entry to IUCV
104 SIEGENIO 4 “V(GCTGIMSB)” branch entry to GENIO START/R
108 SIESATB 4 Saved active task block address
10C SIESATID 2 Saved active task block ID
10E SIETRSP 1 Trace service points
SIETRBRW X'80' Trace branch entries to WAIT
SIETRBRS X'40' Trace branch entries to SCHEDEX
SIETRBRI X'20' Trace branch entries to IUCVCOM
SIETRBRV X'10' Trace branch entries to VALIDATE
SIETRBRP X'08' Trace branch entries to POST
10F SIETRSAV 1 Save trace points
110 SIEASYID 4 “V(SYID)” pointer to the SYID
114 SIEAEXEC 4 “V(GCTREXBR)” pointer to REXX
118 SIEAEXCO 4 “V(GCTREXV2)” pointer to EXECCOMM
11C SIEAEXGC 4 “V(GCTREXGC)” pointer to GETCOMM
120 SIEAEXSC 4 “V(GCTREXSC)” pointer to SETCOMM
124 SIEMOD 4 “V(GCTMOD):” pointer to GCTMOD
128 SIENTPRI 4 The address of the first Private Level Name/Token pair
12C SIEFREHC 4 The address of free-high common storage
130 SIEINTAT 4 The address of active task at time of interrupt
134 SIESAI 4 Save area for branch entry
138 SIEIATID 2 The active task id at interrupt
13C SIEPFECB 4 The address of active page fault ECBs
140 SIEPFFRE 4 The address of free page fault ECBs
144 SIEPFLST 4 The address of last active page fault ECB

TBK — Task Block

Table 7. Contents of Task Blocks

HEX

DISP NAME LEN DESCRIPTION

000 TBK 320 The task block

000 TBKUP 4 The address of the task of higher priority

004 TBKDOWN 4 The address of the task of lower priority

008 TBKFRWD 4 The address of the next task of the same priority
00C TBKBKWD 4 The address of the prior task of same priority

Appendix B. GCS Control Blocks 199

GCS Control Blocks

Table 7. Contents of Task Blocks (continued)

HEX
DISP NAME LEN DESCRIPTION
010 TBKACT 4 The active state block address
014 TBKLOAD 4 The load list
018 TBKPSW 8 The PSW loaded by the dispatcher
018 TBKIOMSK 1 The channel and external interrupt masks
019 TBKPKEY 1 The key
TBKPMXA X'08' The XA mode mask
01C TBKPSWA 4 The second half of the PSW
TBKPAM31 X'80' User in AMODE 31
01D TBKINSTR 3 The instruction address
020 TBKPSW2 4 The last half of PSW for abnormal termination
024 TBKATRSA 4 The address of attach's register save
028 TBKREGS 64 Registers loaded by dispatcher
068 TBKFLOAT 32 The floating point registers
088 TBKMOM 4 The mother task address
08C TBKSIB 4 The next task address following the mother task
address
090 TBKCHILD 4 The address of the first subtask
094 TBKECB 4 The address of attach ECB posted when subtask
completes
098 TBKETXR 4 The address of the asynchronous exit block to schedule
when task ends
09C TBKSTAE 4 The address of the ESTAE control block
0A0 TBKDEB 4 The address of the DEB table
0A4 TBKIDENT 4 Machine and task IDs
0A4 TBKMID 2 The machine ID
0A6 TBKTID 2 The task ID
0=Task run in behalf of a user exit called from an
interrupt handler
1=Console task
2=Command task
0A8 TBKSTOR 4 The address of the task storage anchor block (TSAB)
0AC TBKIUCV 4 The address of the IUCV EIB chain
0BO TBKREXWB 4 The address of the REXX work block
0B4 TBKSFSTL 4 The address of the first line in the program stack
0B8 TBKSLSTL 4 The address of the last line in the program stack
0BC TBKSNLST 4 The number of lines in the program stack
0Co TBKSNBST 4 The number of program stacks
0C4 TBKCOMP 4 A task completion code (ABEND)
0C5 TBKCOMP1 3 A completion code value
0C8 TBKRCODE 2 The abend reason code
0CA TBKKEY 1 The task storage key
0CB TBKPRIOR 1 The task dispatching priority
0cc TBKNDSP 1 The task nondispatchability flags
TBKNODIS X'80' The task is non-dispatchable
0CD TBKFLAG1 1 A flag byte
TBKPROB X'80' The problem state task
TBKAPPL X'40' This is an independent application
TBKTERM X'20' The task has terminated
TBKNAEB X'10' Schedule no AEBs on this task
TBKESTAE X'08' The ESTAE exit routine is active on task
TBKDUMP2 X'04' Turned on for the second dump
200 z/VM V6.3 Diagnosis Guide

Table 7. Contents of Task Blocks (continued)

GCS Control Blocks

HEX
DISP NAME LEN DESCRIPTION
TBKDUMP X'02' The dump is requested by abnormal termination
TBKOSACT X'01 OSRUN is active on this task
0CE TBKFLAG2 1 A flag byte
TBKABEND X'80' The abend was entered
TBKDOS X'40' DOS SVC is in effect
TBKCCVAL X"20' The TBKCOMP contains a valid COMP code
TBKSER X'10' GCTSER entered
TBKFIRST X'08' The first task on priority level
TBKPATHS X'04' The IUCV paths defined by the task
TBKINTER X'02' The interrupt task block
TBKPGFLT X1 The task waiting on page fault
0CF TBKFLAG3 1 A flag byte
TBKPGLCK X'80' PGLOCK issued for this task
0D0 TBKSUBTA 4 The subtask abend resource manager
0D4 TBKREGSV 4 The address of the abend register save area
0D8 TBKTIME 8 The time task was dispatched
0EO0 TBKICODE 2 The interrupt code
0E2 TBKILC1 1 The instruction length
0E3 TBKRXMSK 1 The GCTREX PSW int mask
0E8 TBKRBAD 4 The address of the RB
0EC TBKTIOTA 4 The address of the TIOT
0F0 TBKEPIE 4 The address of the EPIE chain
0F4 TBKWRKEI 4 The address of the EXECIO work area
0F8 TBKWRKCL 4 The address of GCTEIOAB work area
OFC TBKNTPTR 4 The address of the first Task Level Name/Token pair
100 TBKACRS 64 Access Registers loaded by the dispatcher
140 TBKEND 0 The end of the task block
140 TBKLEN 0 The length of the task block

STBLK — State Block

Table 8. Contents of State Blocks

HEX
DISP NAME LEN DESCRIPTION
000 STBLK 240 The state block
000 STBNAME 8 The program name
008 STBPSW 8 The PSW saved for block in STBNEXT
008 STBIOMSK 1 The channel and external interrupt masks
009 STBKCMWS 1 The key, mode, masks, and state
009 STBKEY The key - bits 0-3
009 STBCMW The mode, machine check, and wait masks - bits 4-6
STBEC X'08' 0=BC mode, 1=XA mode
STBEM X'04' Machine check
STBEW X'02' Wait mask
STBSTATE X'01' O=supervisor, 1=problem state
00A STBICP 1 XA-Mode ILC, CC, program mask
00C STBINSTR 4 The instruction address
STBPSW31 X'80' AMODE 31 bit
010 STBNEXT 4 The address of the next state block on state stack

Appendix B. GCS Control Blocks 201

GCS Control Blocks

Table 8. Contents of State Blocks (continued)

HEX
DISP NAME LEN DESCRIPTION
014 STBPREV 4 The address of the previous state block - 0 for the first
018 STBTB 4 The address of the task block for this stack
01C STBNUCBL 4 The address of the NUCCBLK for this module
020 STBENTRY 4 The entry point of the program or SVC
STBENA31 X'80' AMODE 31 bit
024 STBFLAG1 1 A flag byte
STBLINK X'80' The link block
STBSVC X'40' The SVC block
STBAEB X'20' The asynchronous exit block (AEB)
STBSYNCH X10 Synch restore=yes specified
025 STBFLAG2 1 A flag byte
STBFREE X'80' FREEMAIN AEB when the exit ends
STBGMBR X'40' Branch entry (1) for AEB or (0) for SVC entry
STBAEBSD X'20' AEB is for a scheduled exit
STBAEGIO X'10' AEB is for a general I/0O
STBAETIM X'08' AEB is for the timer
STBINTER X'04' The interrupt state block
026 STBWAIT 1 The wait count
027 STBMASK 1 The mask at entry to lock
028 STBSP 1 The subpool of GETMAIN for this block
029 STBLDLOS 1 GCTBLDL-GCTLOS communication byte
STBIOERR X'80' ON-BLDL had an I/0O error
02A STBIORC 1 The 1/0 error return code
02B STBLIBCT 1 The LOADLIB number (1 based)
02C STBICODE 2 The interrupt code
02E STBILC1 1 The instruction length
02F STBAMRM 1 The AMODE/RMODE at the time of SVC
STBCAM31 X'80' The caller was in AMODE 31
STBCRM31 X'40' The caller was in RMODE 31
030 STBEGPRS 64 The caller's register save area (all registers)
070 STBOVER 64

SECTION FOR ASYNCHRONOUS EXIT AND LINK BLOCKS:

070
070
074
078
07C
080
080
081
081
081

084

088
08A

202

STBWORK
STBAETB
STBAERO
STBAER1
STBAERI13
STBAEPSW
STBAEIOM
STBAEKC
STBAEKEY
STBAECMW
STBAEC
STBAEM
STBAEW
STBAESTA
STBAEINS
STBAEA31
STBAEICO
STBAEILC

z/VM V6.3 Diagnosis Guide

64

=m0 e R

X'08'
X'04'
X'02'
X'01'

X'80'

The work area

The task block address used for AE

The RO contents when AE gets control
The R1 contents when AE gets control
The R13 contents when AE gets control
The PSW when AE gets control

The channel and external interrupt masks
The key, mode, masks and state

The key - bits 0-3

Mode, machine check, wait masks - bits 4-6
0-BC mode, 1=XA mode

Machine check

The wait mask

O=supervisor, 1=problem state

The instruction address

AMODE 31 bit

The interrupt code

The instruction length

Table 8. Contents of State Blocks (continued)

GCS Control Blocks

HEX
DISP NAME LEN DESCRIPTION
SECTION FOR SVC BLOCKS:
070 STBSVCA 64
070 STBRSVD2 1 Reserved
071 STBFLAG3 1 A flag byte
STBERRET X'80' Error return desired
STBNOSA X'40' No save area wanted
STBRETRG X'20' Return callee's RO, R1 to caller
STBUSVC X'10' User SVC call
STBVSAM X'08' OS VSAM request
STB203 X'02' SVC 203
STBOSSIM X'or' OS simulation SVC
072 STBCODE 2 The SVC 203 code value
074 STBNRMRT 4 The address of the normal return
078 STBCALLR 4 The address of the SVC caller
07C STBERADR 4 The address of error return
080 STBEFPRS 32 The caller float register save (0-6)
080 STBEFPRO 8 The caller float register 0 save area
088 STBEFPR2 8 The caller float register 2 save area
090 STBEFPR4 8 The caller float register 4 save area
098 STBEFPR6 8 The caller float register 6 save area
0A0 STBUSAVE 4 A (user save area)
0A4 STBSASZ 2 The size of the user save area
0A6 STBSAKEY 1 The key of the user save area
0A6 STBSAKY 1 The actual key of the user save area
0A7 STBRSVD3 1 Reserved
0A8 STBOSRS1 4 The first OSRUN save area pointer
0AC STBOSRS2 4 The second OSRUN save area pointer
COMMON SECTION:
0BO STBEACRS 64 The caller's access register save area (all registers)
0F0 STBEND 0 The end of the state block
0F0 STBENDSV 0 The end of the SVC block
0F0 STBSZSVC 0 The length of the SVC block
0FO0 STBSZLA 0 The length of the link or AEB

Table 9. Contents of Storage Management

SMAB — Storage Management

HEX

DISP NAME LEN DESCRIPTION

000 GCTSMAB 7208 The storage management anchor blocks

000 SMASALT 16 The list of anchor blocks

000 SMALCAB 4 The address of low storage anchor block

004 SMAHCAB 4 The address of high storage anchor block

008 SMALPAB 4 The address of low private storage anchor block

00C SMAHPAB 4 The address of high private storage anchor block

010 SMATASK 4 The address of the task block of the abending subtask
014 SMAFLAGS 1 Flags

Appendix B. GCS Control Blocks 203

GCS Control Blocks

Table 9. Contents of Storage Management (continued)

HEX

DISP NAME LEN DESCRIPTION
SMAIPL X'40' The IPL initialization is complete
SMAGFDCP X'20' GTCGFDCP is running
SMACOMMN X'10' Getting COMMON storage
SMANSTK X'08' The save area is not on stack (GCTSVQ)

015 SMAGFDFL 1 Used by GCTGFPCP
SMARTSH X'80' We removed a TSH page from the spare list
SMARGSB X'40' We removed a GSB page from the space list
SMARMNOR X'20' We removed a MNOR page from the spare list
SMARTSBE X'10' We removed a TSABE block from the spare list
SMAATSH X'08' We added a TSH page to the spare list
SMAAGSB X'04' We added a GSB page to the spare list
SMAAMNOR X'02' We added a MNOR page to the spare list

018 SMATSBEL 4 Length of the storage used for TSABE

01C SMATSHF 4 The address of the first page of full TSH pages

024 SMATSHFF 4 First page of the TSH blocks with one 1 free block

02C SMAGSBF 4 The address of the first page of full GSB pages

034. SMAGSBFF 4 First page of GSB blocks with 1 free block

03C SMAGRAIN 4 The size of the grain of storage

040 SMATSHBL 2 The length of a block of TSHs

042 SMATSHBN 2 The number of blocks of TSHs on a page

044 SMATSHBM 2 The maximum number of TSHs in a block

046 SMAGSBBL 2 The length of a block of GSBs

048 SMAGSBBN 2 The number of blocks of GSBs on a page

04A SMAGSBBM 2 The maximum number of GSBs in a block

04C SMAFTSH 4 The address of a free TSH page

054 SMAFGSB 4 The address of a free GSB page

05C SMAFTSBE 4 The address of free TSABE

060 SMASCOML 4 The address of the start of low common storage

064 SMALCOML 4 The length of low common storage

068 SMASCOMH 4 The address of the start of high common storage

06C SMALCOMH 4 The length of high common storage

070 SMASAVEA 4 The address of the current GETMAIN/FREEMAIN

save area

074 PRISAVEA 2364 Save area set one

074 PRISAVE 60 The register save area for branch entry

0BO PRIWORK1 256 The work area for branch entry

1BO PRIWORK?2 256 The work area for branch entry

2B0 PRIWORK3 256 The work area for branch entry

3B0 PRIWORK4 256 The work area for branch entry

4B0 PRIWORK5 256 The work area for branch entry

5B0 PRIWORK6 256 The work area for branch entry

6B0 PRIWORK? 256 The work area for branch entry

7B0 PRIWORKS 256 The work area for branch entry

8B0 PRIWORK9 256 The work area for branch entry

9B0 PR2SAVEA 2364 Save area set two

9B0 PR2SAVE 60 The register save area for the second branch entry

9EC PR2WORK1 256 The work area for branch entry

AEC PR2WORK?2 256 The work area for branch entry

BEC PR2WORK3 256 The work area for branch entry

CEC PR2WORK4 256 The work area for branch entry

DEC PR2WORKS5 256 The work area for branch entry

204 z/VM V6.3 Diagnosis Guide

Table 9. Contents of Storage Management (continued)

GCS Control Blocks

HEX

DISP NAME LEN DESCRIPTION

EEC PR2WORKG®6 256 The work area for branch entry
FEC PR2WORK?7 256 The work area for branch entry
10EC PR2WORKS 256 The work area for branch entry
11EC PR2WORK9 256 The work area for branch entry
12EC PR3SAVEA 2364 Save area set three

12EC PR3SAVE 60 The save area for GCTGFDCP
1328 PR3WORK1 256 The work area for branch entry
1428 PR3WORK?2 256 The work area for branch entry
1528 PR3WORK3 256 The work area for branch entry
1628 PR3WORK4 256 The work area for branch entry
1728 PR3WORKS5 256 The work area for branch entry
1828 PR3WORKG6 256 The work area for branch entry
1928 PR3WORK?7 256 The work area for branch entry
1A28 PR3WORKS 256 The work area for branch entry
1B28 to PR3WORK9 256 The work area for branch entry
1C27

ANCH — Storage Anchor Block

Table 10. Contents of Storage Anchor Blocks

HEX

DISP NAME LENGTH DESCRIPTION

000 ANCHBK 552 The storage anchor block

000 ANCHFLAG 1 Flags
ANCHLCAB X'80' The anchor block for low common storage
ANCHHCAB X'40' The anchor block for high common storage
ANCHLPAB X'20' The anchor block for low private storage
ANCHHPAB X'10' The anchor block for high private storage

004 ANCHKEYP 512 Starts an array of 32 records, each 4 words long
ANCHKEYH 4 The head of the SACB queue for this key
ANCHKEYT 4 The tail of the SACB queue for this key
ANCHKEYZ 4 The size of the last request under 4K
ANCHKEYL 4 The SACB of the last request under 4K

204 ANCHPGMN 4 The address of the 1st page of minor SACBs

208 ANCHPGL 4 The major SACB for the lowest fully free page

20C ANCHPGH 4 The major SACB for the highest fully free page

210 ANCHMAJL 4 The major SACB for the lowest free page of storage

214 ANCHMAJH 4 The major SACB for the highest free page of storage

218 ANCHS200 4 TSABE for storage gotten in subpool 200

21C ANCHTABL 4 The list of contiguous blocks of free storage

220 ANCHFMNR 4 The free minor's page

224 4 The dummy backward pointer

Appendix B. GCS Control Blocks 205

GCS Control Blocks

EXTWA — External Interrupt Handler Work Area

Table 11. Contents of the External Interrupt Handler Work Area (EXTWA)

HEX

DISP NAME LENGTH DESCRIPTION

000 EXTWA 328 The external interrupt handler work area
000 EXTPSW 8 The external old PSW

008 EXTSAVE 80 A save area

058 EXTAREA 72 A save area

0A0 EXTREGS 64 Registers at the time of the interrupt

0EO EXTFPR 32 Floating point registers

100 EXTACRS 64 Access registers at the time of the interrupt
140 EXTICODE 2 The interrupt code

142 EXTILC1 1 The instruction length

143 5 Reserved

SVCWA — SVC Interrupt Handler Work Area

Table 12. Contents of the SVC Interrupt Handler Work Area (SVCWA)

HEX

DISP NAME LENGTH DESCRIPTION

000 SVCWA 536 The SVC interrupt handler work area

000 SVCSAVE 64 Registers at the time of the interrupt

040 SVCFREGS 32 Floating point registers

040 SVCFREGO 8 Floating point register 0

048 SVCFREG2 8 Floating point register 2

050 SVCFREG4 8 Floating point register 4

058 SVCFREG6 8 Floating point register 6

060 SVCASAVE 64 Access registers at the time of the interrupt

0A0 SVCSTB 240 The default state block

190 SVCUSA 96 The default user save area

1FO0 SVCSTPTR 4 A pointer to the state block in use

1F4 SVCNUM 1 A copy of the SVC number

1F5 SVCILC 1 A copy of the ILC byte

1F6 RESERVED 2 Reserved

1F8 SVCNQRY 24 The PLIST for the NUCEXT QUERY

1F8 SVCNFUNC 8 =CL8'NUCEXT" identifies the NUCEXT function

200 SVCNNAME 8 =CL8" ’ nucleus extension name

208 SVCNPTR 4 Receives the pointer to NUCXBLK

20C SVCNIND 4 =XL4'FFFFFFFF identifies the NUCEXT QUERY

function

210 SVCC14 8 A place for the control reg 14

210 SVCC14B1 1 The first byte of control reg 14
C14MCKON X'10' Enable for CRWs

206 z/VM V6.3 Diagnosis Guide

GCS Control Blocks

PGMWA — Program Interrupt Work Area

Table 13. Contents of the Program Interrupt Work Area (PGMWA)

HEX
DISP NAME LENGTH DESCRIPTION
000 PGMWA 272 The program check interrupt work area
000 PGMOPSW 8 The program old PSW
008 PGMREGS 64 Registers at time of the interrupt
048 PGMACRS 64 Access registers at time of the interrupt
088 PGMICODE 2 The interrupt code
08A PGMILC1 1 The instruction length
08B PGMILCTR 1 ILC for trace
PGMILCB1 X'02' ILC bit 1
PGMILCB2 X'o1' ILC bit 2
090 PGMSAVE 64 The register save area
0D0 PGMPFSAV 64 The page fault reg save area

VMCB — Virtual Machine Control Block

Table 14. Contents of the Virtual Machine Control Block (VMCB)

HEX
DISP
NAME LENGTH DESCRIPTION
000 VMCB 32 The virtual machine control block
000 VMCUSER 8 The virtual machine user ID
008 VMCINSIG 4 The initialization signal 1D
008 * 2 Reserved
00A VMCSIGID 2 The virtual machine signal ID
00C VMCLCKH 4 The lock holding pointer
010 VMCLCKW 4 The lock waiting pointer
014 VMCSCHDX 4 The pointer to the chain of AEB blocks to be scheduled
for this virtual machine
018 VMCFLAGS 1 Flags
VMCWAIT X'80' The virtual machine in wait

Appendix B. GCS Control Blocks

207

GCS Control Blocks

208 z/VM V6.3 Diagnosis Guide

Appendix C. Trace Table Codes

Trace code table entries come in two flavors: 32-byte and 64-byte. The 32-byte entry
format is shown in The 64-byte entry format is shown in

Time-of-day Trace | Contents of

741000 o160k 0000 | \p" " \REG N

0 1 2 8 A C

Contents of | Contents of | Contents of | Contents of
REG N+1 REG N+2 | REG N+3 REG N+4

10 14 18 1C
Figure 15. Format of a 32-byte CP Trace Table Entry

Hex Displacement
Contents

X'00' X'74', which indicates a CP trace table entry.
X'01' Unused (zeros).

X'02' The contents of the time-of-day clock at the time the event being traced
occurred.

X'08' Unused.

X'0A' The trace ID or trace entry code, which defines the event.
X'0C' The contents of register 7.

X'10' The contents of register n+1.

X'14'" The contents of register n+2.

X'18' The contents of register n+3.

X'1C' The contents of register n+4.

© Copyright IBM Corp. 1991, 2013 209

Trace Table Codes

210

75

80 Clock

Time-of-day

0000

Trace
ID

Contents of

Contents of

REG N REG N+1
10 18

Contents of Contents of

REG N+2 REG N+3
20 28

Contents of Contents of

REG N+4 REG N+5
30 38

Figure 16. Format of a 64-byte CP Trace Table Entry

Hex Displacement
Contents

X'00' X'75', which indicates a CP trace table entry.
X'01' X'80', which indicates a 64-byte CP trace table entry.

X'02' The contents of the time-of-day clock at the time the event being traced
occurred.

X'0C' Unused.

X'0E' The trace ID or trace entry code, which defines the event.

X'10' The contents of register 7.

X'18' The contents of register n+1.

X'20' The contents of register n+2.

X'28' The contents of register n+3.

X'30' The contents of register n+4.

X'38' The contents of register n+5.

The format of a trace table entry and TRACE ID codes are described by the

TTABK. The format of a trace table page and its forward /backward pointers (last
two words) are described by the TTPBK.

z/VM V6.3 Diagnosis Guide

Trace Table Codes

The following summarizes the event-specific information that CP records in its
trace table entries from bytes X'0A' to X'1F' (for 32-byte entries), or from bytes X'0E'
to X'3F' (for 64-byte entries).

Appendix C. Trace Table Codes 211

Trace Table Codes

(9J0) 2o1g

[puueydgng

3senbay uoneredQ | (IAVIIAWA) pueindO | ATAATAY | AHAATAA €€20 SOAdDH J1e)G [eNJIIA
¢-0 (MOIN)
SPIOAA [OI3U0D) Touueydqng
juawdeurN yied | AGAAZAY | AHAATAA €20 TOAdOH AJIPOIN [eniIA
V4 €0 uondnrrejuy
piop @I uondnireug SMIANA s914g MSd PIO O/1 sa14g MSd PIO O/1 2000 SIAADH 1ydepy [enpip
3[qe) T JeWIog 99 1000
3[qe} T YeULIO] 995 0420
d[qe} ¢ jeuwlioq 995 0920
SSAIPPY SSAIPPY SSaIpPY a3e10)g
wmyay s,19[[e) MAANA 211D 3O0[g pauINIRy paumiay saidg 00 00 00 00 02£0 XYddOH 100 ISDS wIniay
(F19dD) ssa1ppy (24dD) ssaIppy (T¥dD) ssaIppy (0d9D) a3er0ig
urnjay sJI9[red MAANA T2[[eD | M20[g [eNiIA PauIniay | PawIniay SpIomaqnocy Xxx> [S Porg 0120 WAAJIDH | 9911 o[qealdeJ uiniay
(FIUD) ssa1ppy (ITIdD) ssaIppV (T4 dD) ssa1ppy (04ID) ENERP)S! (L3I9)
uInjay sJ19[red MAANA S.1911eD MOO[g PaUIN}ay | POWIN}ay SPIOMI[qno(] XxXx> [S Po1g 0020 TIIIDH 93e103g 991, UINAY
SSaIPPY SSaIPPY SSIPPY a3e10)g
wmiay saoMeD | MAANA SI01sanbay JO0[g pausissy paisonbay saidg UMWY $20[g 0290 XAAIOH [00d ISDS urelqO
(F1DY) ssa1ppy (ITMdD) ssaIppy (Temyara) ssaIppy pajsenbay a3er01g
umyay sao[ed | MAANA S1oisenbay Yoo[g paudissy SpIOM d[qnoQ XXx> 1 $P0[g 0190 INAAJDH | 991 d[qeade ureqo
(OYTIIXAD)
(TIDLIXAJ) SS2IPPY (1T9d9) (T4dD) >oo1g pajsanbay ENERD)S (9a17)
wmiay s,19[[e) SSaIPPY MAANA | PousIssy jo ssaippy SpIomaqno X003, 1 8 01g 0090 TIAIDOH | 9Se103g 901 UreIqo
9[qe) T eULIO] 995 100
(o1oMm)
MSd apo) uondnrrauy (VSq) ssaippy ydnazayuy
PIO >29yD dunpe O9YD) SUIYdRIA a3e103g Surre] 00%0 HDWdDH oYY SUIYdRIA
00 00 00 00
10 00 00 00 00
10
SSAIPPY
MSd PIO wexdox] | uondedxg uonelsuer, jdnzreuy 1 $SAUPPY MAANA 00€0 NIIIOH ydnzrepuy urerSorg
(dODASX:d) (TIDASXA) NNLX “NIALD
MSd PIO DAS ydnazejuy DAS DASD puaqy Ji puaqy 0020 DASIDOH ydnazejuy DAS
o1 ST i i) ®) v (x3Y) 14S440
PN €+N N I+N N
939 40 SINAZLNOD | DY 40 SINALNOD | O3 40 SINZLNOD | DY 40 SINILNOD | 5IT¥ 40 SINALNOD dal 3IDvil 41NAON FINVN

saujus 8JAq-zg 10 Sepoo 8oel] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

212

Trace Table Codes

(9I0) o1g (IOIVATAY) 3sudg 0=DD
ysanbay voneradQ | ssarppy MGYOI @AMV | dNSATAY | AHAATAT 8¢01T LHIdIDH ‘[PuueydqNg 31e3g
(990) oo1g €=DD
ysanbay uoneradp ssaIPPY MAYUOI | 9NSAHAY | AHAATAY €01 SOIdDH ‘[PuueydqNg 31e3g
=00
00 00 00 00 00 00 00 00 00 00 00 00 ssaIPPY MAYOI | 9NSAHAY | AHAATAY €01 SOIdDH ‘[ouueydqng 1re3s
(9J0) 2o1g (JOIVATQY) 0=2D
3senbay] uoneredQ | ssarppy MGYOI 2AV | dNSATAY | AHAATAT 0€01 SOIdDH ‘[PuueydINg 31e3g
TOAdDH €=DD
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | 9NSATAY | AHOATAY €201 SOIIDH | ‘Puueydqng AFIpoy
1=0D
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | 9NSAHAY | AHOATAY 1201 SOIIDH | ‘Puueydqng AFIpoy

-1 (MOIN)
SPIOM [0TU0D) 0=2D
9 PIOM MDA Juawedeur| yied | dNSATAY | AHAAZAY 0201 SOIIDH | ‘Puueydqng AJrpon
(IOIVATAY) €=0D
00 00 00 00 00 00 00 00 00 00 00 00 | SSIPPV MGYOI 21V | dNSATAY | AHAATANT €101 SOIdDH ‘[ouueydqng ey
(IOIVATAY) 1=2D
00 00 00 00 00 00 00 00 00 00 00 00 | SS2IPPY MGYOI 21V | dNSATAY | AHAATANT 1101 SOIdDH ‘[Puueydqng ey
(JOIVATQY) 0=2D
00 00 00 00 00 00 00 00 00 00 00 00 | SSPIPPV MFUOI 2ABY | dNSATAN | AHAAIAY 0101 SOIdDH ‘[Puueydqng JeH
(JOIvATa¥) €=DD
00 00 00 00 00 00 00 00 00 00 00 00 | SSPIPPV MGAOI °ABY | dNSAHAYN | AHAAIAY €001 SOIdDH ‘PuueydINg Ie3[D
(JOoIvAIaY) 0=DD
00 00 00 00 00 00 00 00 00 00 00 00 | SSPIPPV MGUOI 2ABY | dNSAHAY | AHAAIAY 0001 SOIdDH ‘PuueydINg Ie3[)

werdorg (MVD)
[PuUeYD Ul MDD 18I | PIOM SSaIppy [Puuey) | AHAAHAY | AHAATAA ISNIANA |00 00 16A0 AOAdDH | 1884 O/1 HeIS [enpIA
weidor] (MVD) HOAJDOH
[PuURYD Ul MDD 18I | PIOM SSaIppy [puuey) | AHAAHQY | AHAATAA ISNIANA 100 00 060 AOAdDH O/1 ¥e31S [eniap
(MSD) o307

PIOM Snjelg [auuey) Puuey) paywr] | AHAAIAY | AHAAHAA ISNIANA | 00 00 000 MSDADH | Pa10IS MSD [emiIA
jdnazeyuy
mpwere] jdnimpg (ars) ai Puueydqns | AJAATAY | AHAAZAA | (IAVIIANA) Puerdo ISNIANA | 00 00 9¢20 SOAdDH | Surpua 3sal [eniaip

(MSDSION
(Msa) (MSDS) pIom [puueydqng
PIOM SM3eI§ papuLIxy smjeg Puueydqng | ASAAIAY | AHAATAA 6€D0 SOAdDH 1S3, [en}IA
oL ST 2 i)) v (xay) LASAI0

P+N €+N T+N I+N N

OFY 40 SINILNOD | O 40 SINIINOD | DY 40 SINALNOD | DY 40 SINALNOD | 93¥ 40 SLNILNOD dal 4DVl 41NAON FINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

213

Appendix C. Trace Table Codes

Trace Table Codes

0=20

(Mms3) (MSDS) piom ‘[ouueypqng 1s91,
PIOM SnjeIg papuaixy snjeig [puueydqng AIsAaad 1601 HAIDH | Puueydqng [2d4L
NG 103 poameay asuodsay /3sanbay
! 0601 OIDdOH | uohewLIoju] [Puueyd
ING] 10J PIAISSIY voneuosu]
4801 OIDdOH [PuueyD papuLixy
MIAIDH
SOAdDH
1SS9IPPY AOAJdDH
aM[0sqY 3SOH MOId (IOIVATAY) NVddOH €=DD ‘[Puueydqng
1SSAIPPY TOAdD 1SSAUPPY IO | papuadsng snowaid | ssaIppy MQAOI 2ABY | dNSATAN | AHAATAY €801 HVddOH aumMsay [ey]
MIAIDH
SOAdDH
1SS9IPPY AOAJdDH
aM[0sqY 3SOH MOId (IOIVATaY) NVddOH 7=0D ‘[Puueydqng
1SS9IPPV TOAdD 1SSAPPY IO | papuadsng snowaid | ssaIppy MQAOL 9AWY | dNSAHAN | AHAATAY 7801 HVJddOH auMSY [ey]
MIAIDH
SOAdDH
1SS9IPPY AOAJIDH
aN[0sqy 1S0H MOId (IOIVAZQY) NVddOH [=DD ‘[Puueydqng
18S9IPPY TOAdD 1SS2IPPY MADAY | papuadsng snowadi | ssaIppy MAYOI 2ABY | NSATAY | AHAATAY 180T HVJddOH auINSY [ey
MIAIDH
SOAdDH
1SSAIPPY AOAdOH
aM[0sqVy 3S0H MdOId (IOIVATQY) NVdIDH 0=DD ‘Puueypqng
1SSAIPPY TOAID 1SS2IPPY MADAY | papuadsng snowaai | ssaIppy MAYOI 2ABY | NSATAY | AHAATAY 0801 HVJddOH aUINSY [ey
(IOIVATQY) €=0D
00 00 00 00 00 00 00 00 00 00 00 00 | SSAIPPY MAYOI 2412V | dNSAHAY | AHAATAY €501 dIdOH ‘[Puueydqng 3537,
(Mms3) (MSDS) piom =00
PIOM Snjeig papueixy snyeyg puueyqns | gNSAIAY | AHAATA 1501 HIdOH ‘[Puueydqng 3537,
(msa) (MSDS) piom 0=0D
PIOM SNJeIS PIpUXy snjejs pPuueyqng | qNSAIA | AHAATAY 0501 IIOH ‘[Puueydqng 1S3,
(430) Po1d asuag £=DD
1sonbay vonerado $SaIPPY MAYOI | dNSAHAY | AHAATQA deo01 LIdDH ‘TPuuRYINg 3reig
asuag 1=DD
00 00 00 00 00 00 00 00 00 00 00 00 $SAIPPY MAMOI | dNSATAY | AHAATA 6€01 HIdOH ‘[Puureydqng 1res
oL 8L 20 0L o) v (xdY) L4S440
+N €+N TN IT+N N
DY 10 SINALNOD | OFY A0 SINALNOD | DI¥ 10 SINALNOD | OFY A0 SINALNOD | Dd¥ 10 SINALNOD dar 4DVl A1NAON ANVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

214

Trace Table Codes

[eA9]

uononsu] ONAS |POIN DdS sderg ALVISAIO
XN JO $SIppy | | Sed IS [9POD dIS| 00 [001SOVIA | 21eIs [9POD URY | Al Yed | GADNI 2U JO SSaIppy [4fas VNIdOH INA/DddV

uondnsu| 00 DA 1s3erg
X3N] JO SSAUPPY 00 00 00 00 TeyM | gsSeld | 1els [9POD URY | Al Yed | GADNI 24} JO SSaIppy 401 VAIOH | ¥HAHS INA/DddV
uononsuy 00 104 1s8erq LDANNOD
X3N] JO $SAIPpY 00 00 00 00 1eYM | gSSerd | 1S [9POD URT | AT Yed | GADNI U} JO SSAIPpPY q0v1 VNIIOH INA/DddV

uononysuy dOANHS 104 1s8e[q
X3N] JO $SAIPpY MADSIN JO SSAIPPY 1eYM | gSSed | 1eis [2POD URY | AI Wed | GADNI U1 JO SSAIppY gl VAIdOH | AIIDTI WA/DddV
uononsu| dOANHS |24 1s8e[q XXXXANHS
XN JO SSAUPPY MADSI JO SSAIPPY TeUM | ZS3eL | RIS [9POD URY | A1 YWed | GADNI U} JO SSAIppY FO¥1 VNIIOH INA/DdAV
GI - 0 sa1dg LOMIAIO! paAIeday ele(
eje(] 9SUSG JUDLINDUOD) | 0 ALG MIT AGAATAY 1401 HIdDH 9SUAG JUSILINDOUOD)
PIATIDNY
GI - 0 sa14g i 9sudg | INDSIOI | AHAATAY 0401 IAIdOH ejR(95U O/
00 00 00 00 00 00 00 00 apoD umyay SSAIPPY MA¥OI | 9NSATAY | AHAATAY 0voL XOIIDH | 1sonbay O /1 oue)
SSAIppPY ydnazayuy
MSd PIO O/1 ASNNIXAD o1g 20142 [AISAIQY 6601 HAIIDH | Puueypqng T 2dAL
€=0D
‘Puureypqng AJIpoy
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 AISAIAY 8601 dIdDH | Puueydqng | adAL
=00
‘Puueydqng AIpojN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 AISAIQY £60T dIdDH | Puueypdng T odAL
1=0D
‘Puureypqng AIpoy
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 AISATAY 9601 dIdDH | Puueydqng T adAL
€1 (MDINJ) 0=2D
SPIOA [OI3U0D) “euuedqng AJIpoiN
9 PIOM MO juswRSeuRA yie] AISAIQY G601 AIdOH | Puueydqng 1 od4],
€=0D
‘[Puueydqng 3sa],
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 AISAIAY €601 HAIIDH | [puueydqng T adAy,
1=0D
(MsA) (MSDS) PIOM ‘Puueydqng 3s3],
PIOM SNJeIS Papudlxy snyels PUUERdgNg AISA5aY 7601 HAIIDH | Ruueypqng T odAL
o1 8L L oL o) v (xeY) LASIA0

PN £+N THN I+N N

DAY A0 SINALNOD | DI¥ 40 SINALNOD | 94 40 SINILNOD | D3 40 SINAINOD | DAY A0 SINALNOD ar 1OVl 41NAON JINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

215

Appendix C. Trace Table Codes

Trace Table Codes

uondNISuy s3erq
IXON JO SSaIppy 00 00 00 00 00 00 00 |ADSAS-dD [9POD W | Al Wed | dADNI 24} JO SSaIppy dost VNIdOH Pauuo0d ADAI
uonONISuf 00 1sSer1
XON JO SSaIppy 00 00 00 00 | 00 zZS3eL | zADSAS-dD [9POD W | dI Wed | dADNI 94} JO SSaIppy VO0SsT VNIIOH 1dooy ADNI
uondNIYSUf s3erg
XN JO SSaIppy AAOSIN JO SSaIppV 00 00 00 | ADSAS-dD [9POD U | Al Wed | dADNI 943 JO SSaIppy 60ST VNIIOH admg ADNI
uononysuy s3eg
PPN JO SSaIppy AAOSIN JO SSIIppY 00 00 00 | ADSAS-dD [9POD WY | Al Wed | dADNI 943 JO SSaIppVY 8081 VNIIOH 19900 ADNI
uondNIYSUf s3eq uonsrdwo)
IX3N JO SSaIPPV JIDOSN JO $SaIPPV 00 00 00 00 [9POD U | Al Y¥ed | GADNI 943 JO SSaIppV £0ST VNIdOH 1S9l ADNI
uononNYsuy s3erg
IX3N JO SSaIPPV JAIDOSIN JO $SaIPPV 00 00 00 | DSAS-dD [9POD W | Al Wed | dADNI 94} JO SSaIppy 90T VNIIOH Aday ADNI
uononYsuy s3erq
IXON JO SSoIpPPY AAOSIN JO SSIPPV 00 00 00 1 ADSAS-dD [9POD WY | AI Wed | dADNI 243 JO SSaIppVY S0ST VNIIOH SATIY ADNI
uondNISU[s3erg
XON JO SSaIppPY OSSN JO SSAIpPV 00 00 00 1 ADSAS-dD [9POD WY | Al Wed | dADNI 243 JO SSaIppVY ¥0ST VNIIOH puss ADNI
uonONISU[s3erg
XON JO SSaIpPY AAOSIN JO SSaIppV 00 00 00 00 [9POD W | Al Wed | dADNI 24} JO SSaIppy €051 VNIdOH aqrsag ADNI
uonONISUY
IXON JO SSaIppY 1ajjng Jo SsaIppy 00 00 00 |ADSAS-dD 00 00 00 00 | dADNI 943} JO ssaIppy 08t VNIIOH | Iefng 2A3ay ADNI
uonONISUy
XON JO SSaIppy 00 00 00 00 00 00 00 00 00 00 001DD | dADNI Y3 JO SSAIPPY 10ST VNIADH | 98essajA 189L ADNI
uononysuy SUOIIIAUU0D)
IX9N JO SSaIPPV | JO "ON "XBJN | 9ZISULIE] 00 00 00 1dOSAS-dD 00 00 00 00| dADNI Y} JO SSaIppY 00s1 VNIdOH £1nD ADNI
Axessadauun)
swmsy [DINNOD
dar esn 00 00 00 00 00 00 00 00 00 00 00 00 devt ANIIOH INA 1 DddV
Serq
SSaIPPV MAANA SSAIPPYV TINUVI SSaIPPV Md1OD [2dAL 3u1| A1 Wed | dADNI U3 JO SSAIppY (115748 INNIIOH | 1dnzLiu] INA/DddV
39uu0)) papuadsng
uonongsuy 00124 aumsay LOANNOD
IXaN JO SSaIppV 00 0012POD AdI| eYM |ZsSerd|1sSe[d | 00|°POD W | Al Wed | dADNI Ui JO SSIppy dcrl ANIIOH WA/DddV
uonoNISUf s3erq HIVISLAS
IX3N JO SSaIPPV 00 00 10012dOANHS 00 00 00 | =¥e1S [9POD WY | Al Y¥ed | GADNI 943 JO SSaIppV Vvl VNIdOH WA/DddV
uondongsuy s3eq AdAONLES
IX3N JO SSaIPPV 00 00 00 |2dOANAS 00 00 00 | =¥&1S [9POD WY | Al Y¥ed | dADNI 943 JO SSaIppV cIvl VNIdOH WA/DddV
o1 8L 8 (1] 8) v (xdy) 13S4910
7+N €N CtN I+N N
OHY 40 SINHINOD | 93¥ 40 SINAILNOOD | OF¥ 40 SINALNOD | OF¥ 40 SINHLNOD | 93¥ 40 SINALNOOD dr 4IdVil 4TNAdON JINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

216

Trace Table Codes

AVHO-dIM
| 11dd-d9M
ATAXI [DTAID-IM (NsA) ar divi1-ddm XDAdOH
ADI 94} JO sSaIpPy INNI-99M wed [(SDD) dI wed | HAOW-ddM 1 00 00 | MV NS =43 JO SSaIppy 8091 ADAIOH Aem-1 ANHFS DD
AVHO-dIM
| 11dd-ddM
ATAXT [DTAIO-dIM (NSA) ar divi1-ddm
ADNI Y} JO SSaIppy INNI-99M yred |(SDD) A1 yred | HAOW-ddM 1 00 00 | MIVNS 943 JO SSaIppV 9091 ADAIOH ATdd¥ SOO
AVHO-dIM
| 11dd-ddM
ATAXT [DTAIO-dIM (NsA) ar dIvI1-ddm
ADNI Y3 JO SSaIppy INNI-99M yed |(SDD) a1 wed | HAOW-ddM 1 00 00 | MV NS 943 JO SSaIppV 7091 dDOAdDOH HATADHY SOO
SSaIppy
MNAANWA ¥WLm3 | AHAR 943 JO SSIppY 00 001(SDD) AI Wwed | 00 |HAOD-AI|00 00 00 00 00 00 €091 MOAJIDOH H9¥8Nd SO0
£ Dag Gl nagy MOAIOH
0 s214q “ereq 3deoy 00 001(SDD) AI Wed g sa14q “ereq 3deoy 0091 IOAdIOH 1dedoy 50D
$SIPPY MAAWA $SIPPY TR VdI $SIPPY MA1DD ANON | GADNI 3 JO $SAPPY 0SST INOIIDH | ¥dnamsyur oN ADNIT
Serg M1ax1
SSIIPPY VI SSAIPPY MIDSIN SSAIPPY MOTIXI [opoD 1d[| yred SO 00 00 00 1dI SSO 1eST dNIIDH | 991a198 WsAg ADNIT
Serq
SSAIPPY MNAANA SSIIPPY TINI VI SSIIPPY MA.1DD [2d4L 3ur | A1 wed | ADNI 43 Jo ssaIppy 0est WNIdOH ydnueiur ADNI
uononIsuy PHnq p8ua
IX9N JO SSaIppPV eiep ayj JO ssalppy eleq |pSud] IRpng 00 00 00 00 | AADNI 9Y} JO SSAIPPY q1sl VNIdOH T10dI ADNI
uonoNISuy SN
IX3N JO SSaIppPV 00 00 00 00 00 00 00 00 00 00 00 |3SeIN | dADNI 943 JO SSaIppVY 1161 VNIdOH [01uU03 395 ADNI
uonONISUY
IX9N JO SSaIppV 00 00 00 00 00 00 00 00 00 00 00 [3SeIN | dADNI 243 JO SSaIppVy 01s1 VNAIdOH ASEIN 19S5 ADNI
uondNISuf s3erq
IXaN JO sSaIppy 00 00 00 00 00 00 00 1dOSAS-dD [9POD WY | dI Y¥ed | ADNI 943 JO SSalppy 4051 VNIdOH I9A95 ADNI
uondNIsuf s3erg
IX9N JO SSaIppV 00 00 00 00 00 00 00 1dOSAS-dD [9POD WY | dI Y¥ed | ADNI 943 JO SSaIppy H091 VAIdOH Sumsay ADNI
uononysuy s3eg
PPN JO ssaIppy 00 00 00 00 00 00 00 1dOSAS-dO [9POD W | I Y¥ed | dADNI 24} JO SSaIppy aost VAIdOH q2S41N0O ADNI
uononysuy
IX3N JO SSaIPPV | Iofng o3 JO SSAIPpPY 00 00 00 1dDSAS-dD 00[9POD URT|00 00| dADNI Y} JO SS9Ippy D0ST VOIIOH | Ieyng arepsd ADNI
oL 19 4" o1 o v (x3Y) 145440
PN e+N N I+N N
OHY 40 SINAINOD | D3¥ 40 SINHINOD | 9HY¥ 40 SINAILNOD | 93¥ 40 SILNHINOD | ODi¥ 40 SINALNOD dr 3dViL TNAON HINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

217

Appendix C. Trace Table Codes

Trace Table Codes

£ nagy 00 | HAODY-dI GI nay} MDAJIDH
0 sa14q ‘ereq 3dedoy 1(SDD) Al wed g sa1q ‘ereq 3dedoy 0891 IDAdDOH | Ioiug LJHDDV SOD
SSaIPPY uononsuy TO0XDA
SIAGINA Ius1In) ise] Jo ssaIppy 00 00 00 00 00 00 00 00 00 00 00 00 S191 XDAdDH puaqy 1J0S SOD
AVHD-9IM
| LIAd-99M
M1AXI | DTIdD-9IM av1-gam JuswIUOITAUY
ADNI Y3 JO SSAIPPY INNA-gIM | 00 001(SDD) AI Wed | HAOWN-9dM | 00 00 00 00 00 00 F191 dDAJIDH I9S() Ul IO DD
AVHD-9IM
| LIAd-99M
M1aXI | DTIdD-9IM (ASA) ar AIv1-99m MIgIM INSA
ADQI U} JO SSAIPPY INNA-gIM | wed [(SDD) alywed | |HAOW-9dM 100100 | MIVNS U} JO SSaIppy €191 XOAdDH | ur 1o11g 91307 DD
n1
aweunT | 00 00(SDD) AI Wed awewaN 2191 IDAdDOH | 103 LOHNNOD SDD
MTAXI ZLIanNv-dl (NSA) ar aadwo)
ADQNI JO SSAIpPpY | TLIANV-dI100 00 | wied [(SDD) Al yied | HAOW-IIM |00 00 00 | MAVNS U3 JO sSa1ppy 1191 ODAdDH a3essa]N SOD
INSA
PLRSN JNSA | 00 001(SDD) AI wied 00 | ®3ed 19s1 |00 00 00 00 00 00 0191 IOAdOH wox JYHAHS SDD
LINITOSIN INSA
PLIOs) JNSA 1(SDD) dI yied IDWIL | 00 00 00 00 00 00 q091 IDAdDOH | 103 LDHNNOD SOD
ADAdDH
AVHD-gIM MDAJIDH
| LIad-99M SOAJIDH
M1dXI | 9TAdD-dIM (NsA) ar AIv1-dam MDAJDH INSA
ADNI Y3 JO $SAIPPY INNA-g9M | wed |(SDD) dl wed | FAOW-GIM | 00 00 | MIVNS 943 JO SSaIppy D091 ODAJdDH woy X1 SO
MVHD-9IM
| LIAd-99M
M1dXI [DTIID-9IM (ANSA) ar div1-gam Mddam SOD
ADNI Y3 JO $SAIPPY INNA-gIM | wed [(SDD) Al wed | HAOWN-9dM 100 00 | MAVNS 93 JO SSaIppy q091 dDAdDH | ut 1ong 21307 SDD
ZDAdDH
(NSA) ar £ a3 T sahq XDOAdOH
awreun | yied |(SDD) AI Wed ‘SwewaN | eye(19sM] V091 IDAdDH MAAHS SOD
AVHD-9IM
| LIAd-99M
M1dXI | DTAdID-9IM (NsA) ar arv1-gam XDAdDH
ADQI U3 JO SSAIPPY INNA-gIM | wed [(SDD) Al wed | FAOW-GIM | 00 00 | MIVNS 943 JO SSaIppy 6091 ADAJIDH Kem-z ANES SOD
oL ST 2 oL o) A (xay) LASAI0
P+N €+N T+N I+N N
OFY 40 SINZLNOD | OH¥ 40 SINIINOD | DY 40 SINALNOD | DY 40 SINALNOD | O34 40 SLNILNOD dar 4DViL 41NAON FINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

218

Trace Table Codes

‘NI 10J PIAIISAY J041 TTVIDH | yuswaSeuey 39l [V
‘INGI 10] PIAIISY H0LT dVAdDH PRV TV
‘INGI 10J PaATaSay aozt dOAdDH | @I uonadwo) 3s0g
‘NI 10] PIATISAY D041 IVAIOH Suriod ATV 1°532q
ING] 10J POAISISaY] SN
P q0.1 IVAdIOH ALV 1e9Y 10§ [[od
‘INGI 0] PaAIaSAY 6041 OOAdDH | (TemiItA) T DD VOIS
“INGI 0] PIAIISRY 8041 1OIdDH (1ea) 7 DD VOIS
‘INGI 10J PaATaSay 2041 OOAdDH | (1emIA) € DD VOIS
‘INGI 10 PaAIaSHY 9041 OOAdDH | (TemtA) 1 DD VOIS
‘INGI 10 PaAIaSAY S0/ OOAdDH | (TemirtA) 0 DD VOIS
‘INGI 10§ PIAIISRY F0LT IOIIDH (Tea) € DD VOIS
‘INGI 10J PaATaSay €01 1OIdDH (1ead) 1 DD VOIS
‘INGI 10 PaAIaSRY 2041 J1OIdDH (reay) 0 DD VOIS
INGI 10J PIAISSY toxrg /
P 1041 ODAJdDH | 93ueyD ajelg anand
Iajsuel], eyeq /
° JO0. IAIISI
ELIo) P b 001 ODAdDOH | 93ueyD #jelg anand
AVHD-9IM
| LIAd-99M Arv1-gam
M1AXI | DTIdD-9IM (ASA) ar | FAON-9IM XDOAdOH To11g
ADNI Y3 JO $SAIppY INNZ-gIM | wed [(SDD) al wed 100 | HAODY-dI | XIVNS 343 JO Ssa1ppy 6891 ADAJIDH Kep-z ANAS SOD
AVHD-9IM
| LIAd-99M AIv1-dam
M1AXI | DTIdD-9IM (NSA) ar | HAON-9dM XDAdDH Io1rg
ADNI Y} JO SSAIPPY INNA-IM | wed [(SDD) Al wed 1001 HAODY-dI | MAVNS 94} JO SSaIppy 8391 ADAJIDH Kep-1 ANAS SOD
AVHD-9IM
| LIAd-99M av1-gam
MT1dXI | DTAID-9IM (nsA) ar | HAOW-9dM
ADNI Y3 JO $SAPPY INNA-gIM | wed [(SDD) Al wed 1001 HAODY-dI | MAVNS 94} JO SSaIppy 9891 ADAIDOH Toxrg X1dH¥ SOD
AVHD-9IM
| LIad-99Mm av1-gam
M1dXI | DTAID-dIM (NsA) ar | HAOW-99M
ADNI 9Y3 JO $SAIPPY INNA-gIM | wed [(SDD) Al wed 1001 HAODY-dI | MAVNS 94} JO SsaIppy ¥891 dDAdDH | 10o11g FATHDHY SOD
oL ST 2 i)) v (xay) LASAI0
P+N €+N T+N I+N N
OFY 40 SINALNOD | DY 40 SINALNOD | OI¥ 40 SINAINOD | DY 40 SINIINOD | 9DH¥ 10 SINILNOD dal 4DVl 41NAON FINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

219

Appendix C. Trace Table Codes

Trace Table Codes

(M¥D) 00 00 uoryeuruIay,
piop 1odey puuey) 000000 00| 00 00 10 NIHDNXAd 00 00 00 00 00 00 00 00 €oat DDdDOH 1e 3PaYD [Puuey)
SSIPPY PA023Y | 00 00 00 00 10 SSPIPPY 00 00 10
00 00 00 00 00 00 00 00 1011 307 wIsAs 3o0[g 901a9(189y | dNSATAY | AHAATAT zoat DDAdDOH D [URYD
00
00 00 00 10 IRWeIe] (M¥D) MDD
00 00 00 00 | Indup 3dayD duryoejy | pIop Hodey [PuueyD 00 00 00 00 00 00 00 00 roat DAUIDH | dunypeN pase[y O/1
(¥ pue (TIdD) (T9dD) TIOALI-OI 00 00 10
€IdD) MDD Surreg 00 00 00| DV TI-IOI |"TATOHY-OI | 9NSAHAY | AHAAHAY 2001 HA¥dDH uondedxy jrun
| TADALI-OI 00 00 10
MDD Surreg 00 00 00 | DV TI-IOI ["TATOHE-OI | 9NSATAY | AHAATAN 1001 TALIDOH SPRYD U
‘INGI 10§ PIAIISIY 8Ll dOAdDOH | (1enirip) € DD s90d
‘INGI 10 PaAIaSHY LT JOAdIDH | (remiip) T DD S40OH
‘INGI 10 PaAIaSAY 9TLL JOAdDH | (remiip) T DD S40OH
‘INGI 10 PIAIISAY STLL JOAdIDH | (femiip) 0 DD sS40
‘NI 10§ PAIISIY ¥asLL JOAJdOH | (Tem3arp) panss| SqOH
(renyarp)
° JO. DATIISI
AL 105 PaATSsSd el SOAIDH | € DD VOIS INSaaD
(Ten3tp)
° JO. DATIISI
WL 395 PaATSSSd Ul SOAIDH | 7 DD VOIS INSEaD
(renyarp)
° JI0. IATIISI
WA 10§ Ponosod 121 SOAIDH| T DD VOIS INSEAD
(renyarp)
N I0. IAIISO
WAL 10§ Ponosod 0eL1 SOAIDH| 0 DD VOIS INSEAD
‘INAI 103 PaAIISY 9141 HOAdDH | (remunp) € DD s4OS
‘INGI 10§ PAIISIY SIZL HOAIDH | (remip) ¢ DD S40S
‘INGI 10 PaAIaSHY PILL HOAdOH | (remunp) T DD sdOS
‘INGI 10 PaAIaSAY 1L HOAdOH | (remunp) 0 DD s4OS
‘INGI 10 PIAIISAY (4948 HOAJDH | (1eniarp) panss] sgOS
wvﬁm\s 0}
° J0. IATIISI
AL 103 P b 1948 TIVIOH | 19s) Suoip| paiddes
.2 I0. IAIISO ume
dr o5 p d 01ZT TIVIOH | Surdesrs e dn-axem
oL ST i (i)) A (xay) LASAI0
P+N €+N T+N I+N N
OFY 40 SINZLNOD | OH¥ 40 SINIINOD | DY 40 SINALNOD | DY 40 SINALNOD | O34 40 SLNILNOD dar 4DViL 41NAON FINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

220

Trace Table Codes

9[qe} ¢ JeUWLIO] 995 €00C

d[qe} T BULIO] 995 00¢

d[qe} T eULIO] 995 100¢

9[qe} ¢ JeULIO] 995 000¢

9[qe} ¢ JeUWLIO] 995 8461

9[qe} ¢ JeUWIO] 995 961

9[qe} T JeULIO] 995 9461

d[qe} ¢ jeuwlio] 995 ag6l

9[qe} 7 3eulIO] 995 ys6l

d[qe} T BULIO] 995 €961

9[qe3 T yeuWio] 995 [45[)8

9[qe} ¢ JeULIO] 995 1961

9[qe} ¢ JeUWIO] 995 0s61

d[qe} T eULIO] 995 qret

9[qe} T JeUWLIO] 995 yi6l

9[qe} ¢ jeuwioq 995 clel

d[qe) T 1eULIO] 995 cl6l

9[qe} ¢ JeUWIO] 995 116l

91qe3 T yeWio] 995 016l

9[qe} ¢ jeuwlio] 995 6061

9[ge) T 1eUWLIO] 995 8061

d[qe} T eULIO] 995 2061

9[qe} T JBULIO] 935 9061

d[qe} ¢ jeuwio] 995 S061

9[qe} ¢ JeUWLIO] 995 Y061

9[qe} ¢ JeUWIO] 995 €061

9[qe} ¢ JeUWLIO] 995 061

9[qe3 T yeuwio] 995 1061

P=pazifeniu] J0N
Wed 0=pozieniuy yied dIdHD onfeA MAD 00 00 00 00 00 00 00 00 yodat AdDAOH | (MUDLS) MID 21035
o1 81 L (1) o) A4 (xdy) 13S490
7N €+N TN I+N N

OHY 40 SINALNOD | OH¥ 4O SINAINOD | D3Y¥ 40 SINAINOD | O3¥ 40 SINALNOD | 93¥ 40 SLNHINOD dl 4DVIL H1NAdON HINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

221

Appendix C. Trace Table Codes

Trace Table Codes

FIAINTXAD) (FLIFAVS) (ETAID) SSIPPY | SN XXX.D dI S01d (STIFAVS)
1IXg [ey 991D SSAIPPY [e IB[[eD) MAAVS PAUInIay | AMPON Winidy % DD 9poD uImiay 00T DASIDH | BOIRIARG-UIIM-UINISY
SSAIPPY SWeN ISALI(] 1A
00 00 00 00 SSAIPPY ey d9[[eD) (dSAZS) eareanes SSAIPPY [e IB[[eD uondun, JO SSAIPPY 0v8T (snotrep) ur [[eD uonoung D
SSaIppPY
auwreN uonoun, SSAIPPY ey 291D (ASAZS) eareaneg SSAIPPY [e I2[[eD 00 00 00 00 068¢ (snorrep) Ted uompung O
(STIHAVS) (FTIHAVS) (eTIaD) XXX.D 19)S139Y 110YS
SSAIPPY [ENIIIA 3[[eD) SSAIPPY [IB[[ED | SSAIPPY MIAVS MIN Al 2MPOIA I3[[eD (QIdD) DT WIVd 088T DASADH | 0} edIedAeS-IM-T[ED
(STAIAVS) (FTALAVS) (e1¥dD) XXX.D 138139y uo]
SSAIPPY [EeNIIA 9[[eD) SSAIPPY [I1[[ED | SSAIPPY MIAVS MIN Al 2MPOA Ia[[eD (24dD) O WIVd 0%8C DASIDH | 0} BIIBIARS-UIIM-[[ED
(STITAVS) ssa1ppy (FLIATAVS) (ETIdD) XXX
MAUDI 129 d9[[eD SSAIPPY [I1[[ED | SSAIPPY MIAVS MIN ‘Al 3MPON Ia][eD (Q4dD) DY WIVd 018¢ DASJIDH | 1senbay [re) 30011pug
(STIHAVS) (FTIHAVS) (ETIID) XXX.D
SSAIPPY [eNIIIA 3[[eD SSAIPPY [Id[[ED | SSAIPPY MIAVS MIN Al dMPON I9[[eD (Q4dD) DY WIVd 008¢ DASIOH BITEIARS-IIM-T[ED
uone[suenun
MDD Ppaje[suei], 3sano SSAIPPY MDD NN, 00 00 00 00 00ST INNJIOH 0/11s9nDH
LIVMDAWA
| LIVMOANA
45V | TLDIDANA OVTI-AsdH puewwo)
pUBWIWO)) Pajeradiqqy | TLDADANA A4SV | AdAL-ASD 100 00 00 00 00 00 10€T INADJIOH dD °mdaxyg
INIVI-INOD SOAdDH
| INIVI-INOD MDAJIDH

(@9dD) | OV T1IA-INOD ODAJdDH MIINOD
SSAIpPPV MIAHAQY | MAANA uoneunsaq SAANWA ToreurdliQ | LVIS-NOD SSAIPPY MIINOD 002¢ 0DOJdDOH MOVIS 10 aay

3[qe) T JeuIo] 295 £01¢

3[qe} T yeuiog 393 901¢

d[qe} ¢ jeuwioq 995 Ga0lc

9[qe) T 1eULIO] 995 y01¢

3[qe) T JeuIo] 295 €01¢

3[qe} T yeuiog 9393 201¢

9[qe} ¢ yeuwio] 995 101¢C

9[qe) T eUWLIO] 995 00Tc

3[qe) T JeuIo] 295 §00¢T

3[qe) T JeWIo] 295 $00¢C
oL ST 2 oL o) v (xay) LASAI0

P+N €+N T+N I+N N

OFY 40 SINZLNOD | OH¥ 40 SINIINOD | DY 40 SINALNOD | DY 40 SINALNOD | O34 40 SLNILNOD dar 4DViL 41NAON FINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

222

Trace Table Codes

3[qe) ¢ JeuIog 99 90%¢
3[qe) ¢ JeWIog 99 Sove
3[qe) T JeWIog 99 i70i¢3
3[qe} T JeULIO] 995 €0ve
3[qe) ¢ JeuIOg 39 4043
d[qe) T yeULIO] 995 10v¢
3[qe) T JeWIog 99 00%¢
(ssa1ppy INAIDIOH
31Xd) STAXAID SSAIPPY MGAdD $SAIPPY MAAWA | DHDS-XHdD 00 00 00 . OND 01ge 4SAdDOH MDD MPeIsun
SSAIPPY OHOS-XddD
yoels Sunsenbay | LSI'IS-ANA
aunnoy 3urred SSAIPPY MAdD SSAIPPY MAAWA | HIVIS-ANA | 00 DIDD 00€€ MISIOH MAddD ¢S
LVISO-aNA
(anrep 100 | HLVIS-ANA SMIOHAWA 3817 Yoredsiq
eur]) ALAJAANA $SAIPPY MAAWA | HIAL-ANA -10- YISSMAWA 01ze SMISIDOH woyy 1es) doiq
IVISO-ANA
[CLIEAN 100 | HIVIS-ANA SMIOHANA ST
rentu]) XLIJAAWA SSAIPPY MAAWA | HIAL-ANA -10- YISSMAWA 00z€ MISIDH | yoredsiq 03 18sn ppv
(ssaappy 11xH) SSIPPY MAOUL/ADIAOL
VATIOUL | VINIOI MAOUL | IDIOT $SAUPPY MAAWA ¢L11100100100 Riste) 010€ 4sadoH spejsun
SSAIPPY
Yoeig Sunsenbay SSIPPY ¢L 111 ISI'IS-ANA
aunnor SurreD MAOUL | IGAO0L $SAIPPY MAAWA | HLVIS-ANA | 00 > e) 000€ SISIDH | MAOUL/MIIOI X818
SSAIPPY SWeN JIALI(] 9D1A(
Y| SSAIPPVY [2Y 39D (dSAZS) eareaneg SSAIPPY [I9[[eD uondunyg Jo SsaIppy 094DT (snotrep) | ur wnjay uondung D
3[qe) T JeWIog 99 0vOT
SSAIppPY
00 00 00 00 SSAIPPY [} 29D Am—m\/va BIIRIARS SS2IPPY [edy] J3[[eD JopeoH uondunyg 06DC AmSOfm\/v UInjay uondung D
1935139y 110G
(FTUID) ssa1ppy (FTIHAVS) (STAD) ssaIppy (XxxD) A1 (STIHAVS) woyy 193139y 3uo] 03
3IXg [y 9[[eD SSAIPPY [e IB[[eD MAAVS pauIniay | MPON Wiy ® DD 9poD wImay 08DT MASIDH | BoIBIARG-UIIAM-UINISY
(F14dD) ssa1ppy (FTIFAVS) (ETAdD) ssa1ppy (xxx,D) dI (STIFAVS) 18133y 3uo] woy
JIXY [e3Y 29[[eD SSAIPPY ey I9[[eD MAAVS PouInay | AMPON Wy 3 DD 9poD w3y 0¥DT MASADH | eOTRIARS- I -UINIY
FIINTXAD) (FTIFAVS) (ETAdD) ssa1ppy (xxx,D) dI (STIFAVS)
JIXY [e3Y 9[[eD SSAIPPY ey 12[[eD MAAVS PouInay | ANPON Wiy 3 DD 9poD w3y 01T MASIDH | umiady [[eD 32911pu]
o) ST 2 i) ») A4 (x3Y) 14S440
P+N €+N T+N I+N N
OFY 40 SINILNOD | O 40 SINIINOD | DY 40 SINALNOD | DY 40 SINALNOD | 93¥ 40 SLNILNOD dal 4DVl 41NAON FINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

223

Appendix C. Trace Table Codes

Trace Table Codes

zpuedQ | TpuerndO MIISL JWAdOH ey
$SaIPPY MIHDL SSAIPPY ATAA | s3ef | RqUINN ¥V SSIPPY YPO[g NSeL | aYdeD) U SSAIppY I[neq 001¥ JdIAdDH | @3eg aydeD JsIpruN
3[qe) ¢ JeWIog 99 020¥%
yoorun Supyporun 98er01g
SSAIPPY sawel] [eay 0} SSAIPPY [ENIIA $SaIPPY MAAWA SSAIPPY 8,19[[eD 0££0 10 ¥X00 110¥ SINAIDH SUIYDRIA [ENIIIA
oo Sunpoo] a8e10ig
SSAIPPY Sauwel] [eay 0} SSAUPPY [ENIMIA $SAIPPY MAAWA SSAIPPY 8,19[[eD 0££0 10 ¥X00 010¥ SINAIDH SUIYDRIA [ENIIIA
(8¥dD) PaATEIY
(ISDASAS) Ss21ppVy (99dD) (TIFAVS) 1dnaisyug 1o[[013U0)
yorg snyels Dd (£4dD) 00 00 00 00 | SSAIPPY 0[g Bred Dd (SIdD) 00 00 00 00 (FAID) 00 00 00 00 EESD) ADIdDH | 10SSD0I] Pajidr[osu)
ﬁumﬁh—\ﬁwm
(IASDASAS) ssoIpPV | (IIOTASD) SSAIPPY (VIAAWIDD) (SYIINAMD) SdSHI-ADd 3sanbay ad1a1ag
3o01g smyels Dd yooig 3sanbay D | ss2IPPY N20Ig 'ed Dd | SSAIPPY MAAINA 9sed | AdSTI-ADI 100 00 G90¢ dDJddDOH | I9[[OXU0D) 10SS301]
pauIniay
(IGSDASAS) ss21ppy | (IGOHASDd) SSPIPPY (I>RIMIAVS) (SVAINANDA) SASHI-ADI jsanbay asouerq
3P0[g snjel§ Dd 300[g 3sanbay D | $IPPY N20[g eed Dd | SSAIPPV MAANA dsed | AdSTI-ADJ 100 00 66D¢ VOddDH | I9[[01U0D) 10859001]
(¢ =4q) DD paelg
(IISDASAS) sso1ppy | (OADASD) SSoIpPY (ODIMIDH)V OVIA (SYINAIDI) (@ManDIdDI) 3sonbay] [e) 2014195
3o01g smyels Dd yooig 3sanbay D | ssaIppY Yo0ig e DJ SIIANA 2seq PIOM puRwIWOo) 01D¢ dDJdOH | I9[[0XU0D) 10SS30I]
(¢ 4q) DD paelg
(I9SDASAS) Ss21ppV O¥YDdSId 8s21ppV ODRMIDHV | 5VIA (SYINAIDI) (AManD¥EDJ) jsanbay asouerq
3P0[g snjel§ Dd 3o01g 3sanbay] D | SsAIPPVY Yo0[d ered Dd MAANA dsed PIoOM puewwo) 00D€ VOddDH | I9[[01U0D) 10859001]
SSAIPPY
Yoeis Sunsenbay 00| LSI'IS-AINA
aunnoy 3urreD | paxoels Sureg 31g YIopM $SAIPPY MAAWA [HIVIS-ANA | 00 00M D 00£€ MISIOH S)g SIOM YOrIS
djels
0 0 (LMNJDINS) SNdD Suntem jo ysey 0 059¢ IVMdOH | 3tem pajqeud 1ajug
3[qe) ¢ JeWIog 99 €19¢
3[qe} T YeULIO] 995 T19¢
3[qe) T JeuwIog 293 119¢
3[qe) T 1euwIog 993 019¢
TAMA-ANA
| LVLSY-ANA
$S2IPPY MAANA P123[XXX.D [1LD1A-AINA
aMmpo Sunixg 00 00 00 00| Apudim) jo ssaIppy | (I AMPOIN SuBIXg | 00 | IVIS-ONA 009¢ JdSAJDH | 1ypredsiq ay 03 31xg
3[qe) T JeWIog 993 £0¥€
o1 ST i (i} b) v (x3Y) 14S440
PN €+N N I+N N
939 40 SINAZLNOD | DY 40 SINALNOD | O3 40 SINZLNOD | DY 40 SINILNOD | 5IT¥ 40 SINALNOD dal 3IDvil 41NAON FINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

224

Trace Table Codes

‘NI 10] PIATISAY PIIP
‘NI 10] PIATISAY eIId
(MmJssa0ong)
001ZOVTALDA SSTPTUTIA 3IXg Ioje[nuIIs
| AdAISLDA 10§ I yseH |I_quunu yun jonuo)
1DV TALDA SSaIPPY MA1Dd SSaIPPY MFYOI 0143 [eNIIIA SSaIPPY MAAWA (4857 SI4dDH ayde) YSIPIUIA
(310qV)
001ZOVTILOA SSIPIUTA 3Ixg Ioje[nuiig
| AdAISLDA 10§ I YyseH |I_quunu U [onuo)
[DVTILD SSaIPPY MA1Dd SSaIpPPV MAIOI 901A(] [eNHIA SSAIPPV MAANA 4457 HI14dDH ayoeD) NSIPTUIA
‘Goxd ‘uewp
ur “3re porg MOD SIPIUIA Anuyg 103emung
918207 Yy ise 10 “Sie I0J (I yseH | Ioquunu Jun [onuo0)
HHDD MDD X998 3se] SSAIPPY MA1Dd SSaIpPV MAIOI 901A(] [eNHIA SSAIPPV MAANA (1]454 SIAdDH ayde MSIPTUIA
‘NI 10] PIATISAY 601¥
(W1 /2) ssaippy
MIDAS (06¢/VSH) 001 ZOVTIAVS $saIPPY MGHOL INAdDOH ALS-uoN
SSAIPPY MIAVS | DVTIAVS Anuy srqer, yseq AIMHDL 43 yseHq SSaIPPY AHAA 801¥ LLAdDOH se A1y O/1 DAN
Juno) (DIXISINDL)
doo7 01ZOVTINDL auo MIHDL (JOISXINDL) dyeD e HIAOLSX AWHdDOH aerdwo)
I DV TIADL 1seT] JO SsaIppy paRR RquNN | MIOLSX JO 9ZIS [enPy 10§ 921G 3031e] L0T¥ ALIIDH | TeaS HIOISX DAN
7OT1ID0Ud
(IAVS) XIIIDOND 101 DVIID0Ad SSaIPPV MIHDL exgpq
SSAIPPV MAdD | DOVIIIIS Anuy srqer, yseq AEMHDL 43 yseHq SSAIPPY dWNSIY S01¥ HI1AdDH ‘e NSIPIUIA
(Yo1v /Z) SSIIPPY
MADAS (06¢/VSH) XTIAVHDL dI SSaIPPY MGHOL INDIIHOL INAdOH ajerdwo) O/1
SSAPPY MIAVS | ooedg ssarppy aype) Anug 91qeL yseH ADIHDL 49 yseH eje(] JeWIo] JoelL, FOTH LLAdDH | SSTA 9yoeD SIPIUIA
(yo1v /Z) ssa1ppy 7OT1ID0Ud
MIOAS (06¢/VSH) 101 DV1ID0Yd SSaIPPVY MIHDL PapasaN O/1
SSAIPPY MIAVS | OVTIIIIS Anuyg srqer, ysey AEMHDL 49 yseHq SSAIPPY AHAA €01¥ HIAdDH | SSUA dydeD SIpIUI
7O1400Ud
(yo1v /2) ssa1ppy | AODNSVII
MIOAS (06¢/VSH) | OV TIDONUd SSAIPPV MIHDL €=DD ‘pa[red peay
SSAIPPY MIAVS | OVTIIIIS Anuyg arqer, ysey AEMHDL 49 yseH SSAIPPY AHAA 201¥ HIAdDH | SSUA dydeD SIpIuIy
(IgDAS) ssaIppy OTID0Ud 0=2D
MADAS (06¢/VSH) 101DV TIDOUd ssaIPPY MGHOL INDMIHOL ‘aperdwo) peay
SSAIPPY MIAVS [DOVTDILS Anug s[qer, yseH ADIHOL 49 yseHq eje(] JeWIO] el 101 HIAIDH | SSTUA aydeD MSIPTUIy
oL ST 2 i) o) v (xay) LASAI0
P+N €+N T+N I+N N
OFY 40 SINALNOD | DY 40 SINALNOD | OI¥ 40 SINAINOD | DY 40 SINIINOD | 9DH¥ 10 SINILNOD dl IDVilL 41NAON FINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

225

Appendix C. Trace Table Codes

Trace Table Codes

=20 ‘HOS
1SISSY UOTINDdaXH
00 00 00 00 00 00 00 00 00 00 00 00 ssaIPPY MAYOI | 9NSAHAY | AHOATAY 7208 LLddDH aanardiayuy jresg
1=0D ‘HOSI
umwmmaﬂ EOESQ@XM
00 00 00 00 00 00 00 00 00 00 00 00 $saIpPY MGUOI | 9NSAHAY | AHAATIAY 120 LLddDH aAnardiag jreig
(¢-1 sprom 0=DD ‘HOSIN
MDIN) SPIOM [0IIU0D) 1SISSY UOTINIdaXH
9 PIOM MDA JuswedeurN yied | dNSATAY | AHAAZAY 0208 LLddDH aanardiau] 11elg
€=DD ‘HOSH
umwmm«i EOESU@XW
00 00 00 00 00 00 00 00 00 00 00 00 $saIpPY MGAOI | 9NSAHAY | AHAATAY €108 LLddDH aAnardiauy reis
7=0D ‘HDSH
1SISSY UOTINDdIXH
00 00 00 00 00 00 00 00 00 00 00 00 ssaIPPY YOI | 9NSAHAY | AHAATAY 2108 LLddDH aanardiayuy jresg
1=0D ‘HOSH
umwmm/& SOESU@XW
00 00 00 00 00 00 00 00 00 00 00 00 $sIPPY MGUOI | 9NSAHAY | AHAATAY 110S LLddDH aanrdIopy jre)g
0=2D ‘HDSH
ISISSY UOTINJdaXH
00 00 00 00 00 00 00 00 00 00 00 00 sSaIPPY MAYUOI | 9NSAHAY | AHAATAY 0108 LLddDH aanardiayuy yresg
€=DD ‘HDSD
umﬂww/& SOESU@XW
00 00 00 00 00 00 00 00 00 00 00 00 $SIpPY MGYUOI | 9NSAHAY | AHAATAY €008 LLddDH aanardopy jre3g
0= ‘HDSD
1SISSY UOnNdaxXy
00 00 00 00 00 00 00 00 00 00 00 00 ssaIPPY MAYUOI | 9NSAHAY | AHAATAY 0008 ILddDH aanaidiayuy yre)g

‘INGI 10§ PIAIISIY 6LIF

‘INGI 10§ PIAIISIY ST

INGI 10J PIAIRSAY yARRY
asadoH OoDIDO 14«
$D1MSD4d | 3BD9d (arsHO9a) 49addOH 10 asougel
¥doda [ZOLMSD4d AIA-AIAA Al AIddOH wox synsay
(0 10) 3s1] SSAUPPY 100 | 99Z1S 20[g IHOLMSDLd | YseH | 01ad([en3IA | SSaIPPV MAANA 11¥ 9II¥ INIddDH aydeD) SIPIUIA
(LVAILIAQ) (IGHOLIAQ) ODIDO1ds 10
(passadoe jou xden Ji (passadoe jou yoeq Ji (ADLLALAQ) AAQ-AHAA asouger(q 105 a8m
10) eje(] JeWIO] ORI | () 10) SSAUPPY MIHOL £3y] sse00Y ORIl | (00 00|90TAd([ENHMIA | SSAIPPY MAAWA TT¥ SII NIGdDH | el dydeD YSIPIUIN
oL ST i i) ®) v (x3Y) 14S440

P+N €+N T+N I+N N

OFY 40 SINZLNOD | OH¥ 40 SINIINOD | DY 40 SINALNOD | DY 40 SINALNOD | O34 40 SLNILNOD dar 4DViL 41NAON FINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

226

Trace Table Codes

00 00 00 00

00 00 00 00

00 00 00 00

SSaIPPVY NGIOIL

ANSAHAY | AHOAZAY

1809

ILddOH

1=D2D ‘HDSY
JSISSY UOTNIIXY
aanaidiaul Jreig

00 00 00 00

00 00 00 00

00 00 00 00

SSIPPY NGUOI

ANSATIAY | AHAATAY

0809

ILddOH

0=2D 'HOSY
JSISSY UOINDIXE
aanaxdiauy jreig

00 00 00 00

PIopM I 3dnrsug

19)owere ydnimul

1 wajshsqng

00 00 00 00

1909

ILddOH

=20
‘IdL 3SISSY UOnnNdaxy
aanaxdiauf Jreig

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

0904

ILddOH

0=2D
IdL ISISSY UonnNdaXg
aanaxdiauy jreig

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

ANSAHAY | AHOAZAY

€509

ILddOH

€=DD ‘HOSL
JSISSY UOTNIIXY
aanaidiauf Jreig

(Msa)
PIOAA SNje}S papudlxy

(MSDS) PIom
snjelg pPuUURYdING

ANSATIAY | AHAATAY

14909

ILddOH

1=2D ‘HOSL
JSISSY UOINDIXE
aanaidiauy jreig

(Msa)
PIOM Snjeig papuaixy

(MSDS) prom
snjejg puueydqng

ANSAHAY | AHOAZAY

0505

ILddOH

0=2D ‘HOSL
JSISSY UOTNIIXY
aanaxdidul Jreig

00 00 00 00

00 00 00 00

00 00 00 00

SSIPPY NGUOIL

ANSATAY | AHAATAY

€€09

ILddOH

€=DD 'HOSS
1SISSY UOonNdaxXy
aanaxdiauy jreig

00 00 00 00

00 00 00 00

00 00 00 00

SSIPPVY NGIOI

ANSAHAY | AHAAZAY

[450°)

ILddOH

=22 ‘HOSS
JSISSY UOTNIIXH
aanaidiauy jreig

00 00 00 00

00 00 00 00

00 00 00 00

SSIPPY NGUOIL

ANSATAY | AHAATAY

1€09

ILddOH

1=DD 'HOSS
JSISSY UOHNIIXE
aapaidiauy reig

(430) >Porg
jsanbay] uoneradp

SSIPPVY NGIOI

ANSAHAY | AHAAZAY

0€0g

ILddOH

0=2D ‘HDSS
ISISSY UOTINIdXH
aanaxdiauf jreig

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

ANSATAY | AHAATAY

€209

ILddOH

€=DD 'HOSIN
JSISSY UOINIIXT
aanaidiouy jreig

oL

8L

48

0L

o)

v

(xdy) 13S490

7+N
Od¥ 40 SLNILNOD

€N
Od¥ 40 SLNILNOD

N
Od¥ 40 SLNALNOD

I+N
Od¥ 40 SLNALNOD

N
Od¥ 40 SLNALNOD

dr 3IdVil

4TNAON

HINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

227

Appendix C. Trace Table Codes

Trace Table Codes

SSAIpPPY yied ADNI/DddV
UImay s 191D SSAIPPV MGHAN SSAIPPY MIHLJ 20 0002 ANGdOH MP3YD DASI

9[qe)} T jeuLIo] 99g §209

9[qe} T JeWIO] 399G ¥209

d[qe} T FeUIo] 995 €209

9[qe3} T JewIo] 995 09

9[qe)} T jeulio] 99g 1209

9[qe} T WO 399G 0209

d[qe} T FeULIOq 995 9109

9[qe)} T JeWIo] 995 <109

9[qe} T jeuLio] 99g $109

9[qe} T JeuIO] 399G €109

dqe} T FeuIoq 995 109

9[qe)} T JeWIO] 995 1109

9[qe} T jeuliog 99g 0109

9[qe} T JeuIo] 399G 9009

d[qe} T IO 939G 5009

9[qe3 T jeWIo] 995 7009

9[qe} ¢ jeulio] 99g €009

9[qe} T JewIo] 399G 2009

d[qe} T IO 995 1009

d[qe} T FeUIO] 995 0009

9[qe} T jeulio] 99g 1095
ysenbay O/ e0UERD
JSISSY UOINDIXE
00 00 00 00 00 00 00 00 OpOD Uiy SSAIPPY AGAOI | dNSAHAA | AHAAFIAA 0vos XOIdOH aanardiaug 31eig
€=DD 'HOSI
JSISSY UOHNIIXE
00 00 00 00 00 00 00 00 00 00 00 00 SSAIPPV MGYOI | ANSATAYT | AHAATAA €809 [1ddOH aanardiau] 31e1g
¢=DD ‘HOSY
JSISSY UOINDIXE
00 00 00 00 00 00 00 00 00 00 00 00 SSAIPPV MAAOI | ANSAHAY | AHAATIAT 7809 ILddOH oanerdiau] Jre3g
o1 sL 49 (1] 8) v (xdy) 13S4910

7+N €+N CtN IT+N N

OHY 40 SINHINOD | DHY¥ 40 SINAINOD | DFY¥ 40 SINALNOD | OFY¥ 40 SINHINOD | ODH¥ 40 SINIINOD dr 3dViL TNAON HINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

228

Trace Table Codes

Ger,1 103e01pUT Al @sn Aar @sn IDquUINN 1A
SSaIPpY I3[[eD yoeR(1¢-F¢ sig JO s1apeIeY § ISe] JO s1a)oeIeyd F ISII] 01A9(] :1€-9T SHg $10Z TAddDH | dury e asowy DISI
qury [edrdo]
SWeN Ul SSIIPpY JI9[[eD SSaIPPY MAMN'T €102 1d4dOH B 9AOWY DASI

9[qe)} T JeULIO] 395 [41V4

9[qe} 7 1eulIO] 995 1104

d[qe) T eWIO] 399G 0102

9[qe} T FeUIO] 995 4004

9[qe} ¢ jewio] 99g H002

9[qe} T JeuIog 399G aooz
ananQ) JIOM
SSaIPPY e woy (gIVD)
umyay s 1a[ed Ioypuy anand SSAIPPY MGIVO 20 D00 ANGdOH | 98esso ® 399 DASI
anangQ)
$SAIPPY JI0M © 0} (IFIVD)
WInjoy[s, o[[ed Ioypuy anang SSaIPPV AAVO 4004 ANGdDH | 93esso & PPV DASI
SSAIPPY e uonedrddy
uImyay s 19[[ed SSAIPPY NIHAN SSaIPPV MAHLA 20 V002 ANIdOH dD 3P/YD DISI
AIDSWEAN Sury e 10§ a8essa
SSIPPY MNAMNT | 14V | AL 1HAODIAN SSAIPPY NIHAN SSaIPPV MdHId D141 NNA 6002 ANDIOH e onanbaq DAS]
AIOSWAAN A[ur e 10§ a8esso
SSIPPV MAMNT | 14V | AL 1HAODIAdN SSaIPPY MIHAN SSaIPPV MdHId D141 NNA 8004 SINDIOH e ananQd DASI
ananQ) JIOM
SSAIPPY e woxy (NGIaN)
umiay s 19ed Ioypuy ananQ SSAIPPY MGHAN 20 G002 ANGdOH | 93esso] ® 199 DASI
anand)
SS2IppY SIOM € 03 (NGAAIN)
urmyay s 19[[ed Ioypuy ananQ SSAIPPY NIIAN $00£ ANGdOH | 23essaN & ppy DASI
UuoISsag
UOT}EITUNUILO))
10§ AR
SS2IPPY ([uoIssag weysAg-1o3u] £q
wmay s o[en SSIIPPY MdHAN 10 sSaIppV MdHId [N €002 ANAdOH | MdH.Ld 238207 DASI
SSaIppPV dr yred wed Dddv £q
WIngoy s 191D SSAIPPV AAAN 10 ssaIppV MAHLJ v0D 2004 ANAdOH | MdHLd 93e307T DAST
o1 19 4" o1 o v (xdY) LAS410

7+N €+N ¢tN IT+N N

OHY 40 SINHINOD | D93¥ 40 SINALINOOD | 9F¥ 40 SINALNOD | OF¥ 40 SINHINOD | 93¥ 40 SINALNOO dr 3IdVil 4TNAON HINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

229

Appendix C. Trace Table Codes

Trace Table Codes

I9jsuely
‘NG 10J PIAIISAY punoquy 3110J
Y0¥L 28pHIg YoNMS [enjIIA
JuaAy
NI 10J PIAIDSAY uonarduo) 310g
€0vL o3pug YoNMS [endIIA
I9Jsuel],
‘NG 10J PIAIISAY punoginQ 10J
0vL o3pLIg UONMG [eNiIA
9[qe3 T yewio] 995 10¥4
9[qe} ¢ 1eUliof 995 00¥4
9[qe} ¢ 1eUlIo] 995 1€02
9[qe} ¢ JeULIO] 995 0€0Z
9[qe} ¢ jeWliog 995 2¢0L
9[qe} ¢ 1eUWliof 995 dc0L
9[qe} ¢ 1eUlIo] 995 V0L
INGI 0] PIAIISIY 8¢0L
9p0oD vl (TE-91 sig TOXdOH
SSHSSHAW SSASLIAN $SaIPPV AHAN | AIDSINHAIN “1€-91 sig TIVINAAIN ONNIIAN “£-0 sid £20L SOVADH | 28e1015 Jo IO DASI
9lqe3 T yeuWio] 995 920L
9[qe3 T yeuwio] 995 erdV4
9[qe} ¢ 1eUliof 995 ¥20L
9[qe} ¢ JeWIO] 995 €0
9[qe3 T JeWio] 995 0L
9[qe3 T yewio] 995 1204
9[qe} ¢ 1eUliof 995 0204
9[qe} ¢ JeUWIO] 995 dr10s
9lqe3 T JeuWiog 995 V104
d[qe} ¢ yeuwioq 995 6104
IXAUOD “TE-¥C sHd 0 10 ssaippe JNGMNT 8104 NIgdDH | 98ueyD smeis DAS]
9[qe} ¢ JeUWLIO] 995 2102
9lqe3 T yeWIo] 995 S10Z
o1 8L 48)8 o v (xdy) 13S4910
7+N €+N N I+N N
OHY¥ 40 SINALNOD | OHY¥ 40 SINAINOD | D3¥ 40 SINHINOD | DI¥ 40 SINALNOD | 93¥ 40 SINHINOD dl 3IdvVil 41NAON HINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

230

Trace Table Codes

(IOIVAIa) 1=DD ‘[Puueydqng
00 00 00 00 00 00 00 00 00 00 00 00 | SSPIPPY MAVOTI 2AWY | GNSATAY | AHAATAA 1108 SOIdOH [e01307 J[eH
(o1vAEaY) 0=DD ‘[Puurydqng
00 00 00 00 00 00 00 00 00 00 00 00 | SSPIPPY MAVOI AWV | GNSATAY | AHAATAA 0108 SOIdOH [e21307 1e9D
(o1vAEaY) ¢=DD ‘[Puurydqng
00 00 00 00 00 00 00 00 00 00 00 00 | SSAIPPY MAYOI 24V | GNSATAY | AHAATAA €008 SOIdOH [e21307] 1e9])
(IOIvAIaY) 0=DD ‘PPuueydqng
00 00 00 00 00 00 00 00 00 00 00 00 | SSAIPPY MEYOI 2ABY | dNSAHAY | AHAAHQY 0008 SOIdOH [e21307] 1e9])
ININXOVD
| TLNDXDVD
snjelguN | ALDVXOVD SSaIPPY dnzreyug
1001 AHAOATAA |ANAIXOVD $SAIPPY AHAA A $SIPPY AHAA X MAANA TPumo X L06L ALDJIDH payIosuN DIDA
ININXOVD
| TLNDXDVD
p3uaTereq |s3eyy [ALDVXOVD SSaIppY uonemuIg
MDD [opoado MDD |ANEIXOVD SSAIPPY AHAA X SS2IPPY AHAA X MAANA PUmo X 906L DIDdOH O/1DIDA
ININADVD ININXOVD
| TLNDADVD I TLNDXDVD
| ALDVADVD | ALDVXOVD SSAIPPY
|ANHIADVD |ANHIXOVD SSAIPPY AHAA A SS2IPPY AHAA X MAANA ToUMo X G06L ALDIDH | 1989 WlsAg DIDA
ININADVD ININXOVD
I TLNDADVD I TLNDXDVD
| ALDVADVD | ALDVXOVD SSaIPpPY
|ANEJADVD | ANHIXOVD $SaIPPY AHAA X $SaIPPY AHAA X MAANA ToUMo X P06 ALDJDH | 1959 2ATD3S DIDA
ININADVD ININXOVD
["TLNDADVD [TLNDXDVD
| ALDVADVD | ALDVXOVD SSAIPPY 309UU0dsI(]
|ANEIADVD |ANEIXOVD $SIPPY AHAA X $S2IPPY AHAA X MAANA Um0 X €06. ALDJIDH adeJIaIU] DDA
SSAIPPY SSAIPPY
SSaIPPY AHAA 19818, SIIANA 19818 SSaIPPY AHAA X $SaIpPY AHAA X MAANA TouUmo X 206 ALDIOH a[dnod DIDA
ININADVD ININXOVD
["TLNDADVD ["TLNDXDVD
| ALDVADVD | ALDVXOVD SSAIPPY
|ANEIADVD |ANEIXOVD $SIPPY AHAA A $S2IPPY AHAA X MAANA Ioumo X 1062 ALDJIDH e DDA
SSAIPPY
00 00| AHAAFAA 00 00 00 00 00 00 00 00 $SaIpPY AHAA X MAANA TouUmo X 0062 ALDJIDH auyd DIDA
o1 81 2! o1 o) A4 (1Y) 14S940
N €+N TN I+N N
DY 40 SINAINOD | OHY 40 SINALNOD | DY 40 SINALNOD | DFA 40 SINAINOD | DY 40 SINALNOD dar 4I0ViL A1NAON HNVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

231

Appendix C. Trace Table Codes

Trace Table Codes

9[qe) T 1eULIO] 995 1048

9[qe} ¢ JeWIO] 995 00€8

9[qe} T JewIO] 995 0018
[SSINERCN B=1Tg
G1-0 s14g ereQ 2susg | INDSIOI | AHAATAY 0408 [dIdDOH asuag O/ [ed1807]
(IOIVATA) £=DD ‘[Puueypqng
00 00 00 00 00 00 00 00 00 00 00 00 | sSAIPPV MGYOI 2AMOY | JNSATAY | AHAAHAYT €908 [41dOH [ed1307 383,
(Mms3) (MSDS) piom 1=DD ‘[Puueydqgng
PIOM snjels popuoixy snjels puuelpangs | qNSAJAY | AHAAHIAY 1508 I41dOH [e01307] 3831,
(Mms3) (MSDS) piom 0=DD ‘[Puueydgng
PIOM snijels popuaixy sniels puuelpans | qASAJAY | AHAAHAY 0508 1dIdOH [ed1307 38,
asuag
(430) >Po1g €=DD ‘PPuueydqng
ysonbay uonerado SSAIPPY MGYOI | dNSAHAY | AHAATAA deo8 [AIdOH [ed1807] 31e3g
asuag
1=DD ‘[Puueydqng
00 00 00 00 00 00 00 00 00 00 00 00 SSAIPPY NGIOI | dNSATAYT | AHAATIAT 6€08 [dIdOH [ed1307] 31e3s
asuag
(430) o1g (IoIvAIa¥) 0=DD ‘PPuueydqng
1sonboy uonernd | ssAIPPY MAAOI 2410V | ANSAHAY | AHAATAA 8¢€08 [4IdOH [ed1807] 31e3g
(890) >Poig £=D)D ‘[duueydqng
ysonbay uonerado SSAIPPY MGYOI | dNSAHAYT | AHAATAA €€08 SOIdOH [ed1807] 31esg
1=DD ‘[Puueydqng
00 00 00 00 00 00 00 00 00 00 00 00 SSAIPPY NG¥OI | dNSATAY | AHAAAAY 1€08 SOIdOH [ed1307 31835
(490) o1d (IOTVAIQY) 0=DD ‘Puueydqng
1sonbay uonerad(| ssarppY MAOI 2A10V | dNSAHAY | AHAATAY 0€08 SOIdOH [e01307 31015
€=DD ‘[Puueydqng
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | dNSAHAY | AHAATAYT €208 SOIdOH [e1807] AJIpojN
1=DD ‘[Puueydqng
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | dNSAHAY | AHAATAYT 1208 SOIdOH [e21807] AJIpojy

€T (MO
SPIOAA [OTIUOD) 0=DD ‘PuueyPqng
9 PIOM MOINd JuowpdeurN yied | dNSATAY | AHAATAN 0208 SOIdOH 1218077 AJIpON
(IOoIvAFAY) €=DD ‘Puueydqng
00 00 00 00 00 00 00 00 00 00 00 00 | sSAIPPV MGAOI 2AMY | JNSATAY | AHAAHAY €108 SOIdOH [ed1807 I[eH
o1 8L 48 (1] o) A\ (xdy) 13S4910
7N €+N TN I+N N

OHY 40 SINAINOD | DH¥ 40 SINAINOD | DH¥ 40 SINHINOD | O3¥ 40 SINHINOD | O3¥ 40 SINIINOD dar 3dViL 41NAON HJNVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

232

Trace Table Codes

‘NI 10§ PaAIaSaY 970D [ANdDH | 1oyng [Puuey) 3sd,
ele(|
AL 107 PoIos 70D (INADH | 195ng PUURYD 210N
NAL 203 pantassd 7500 vmwmwm 1epng Puey) [eudig
JNG] 10J POAIISHY opnd
€500 AANIDH Puuey) aredarg
Wl 103 porsosoN 00| vawaow 'S8 0
‘INGI 10J PaAIRSAY arod VANADH | [Puueydqng HSIA 131,
INAL0F PatIoso 100 VANADH ﬁwwﬂswmu”m
Wl 103 poriosN awo| vawaow oI 1PoN
‘INGI 10] PaAIASIY V10D VANDH | 915 a8essaq 33
‘NI 10§ PaAIaSaY 610D 9INdDOH a3esSO pudg
d[qe) T 1eULIOq 995 110D
3[qe} T 1O 995 010D
9[qE} T WO, 99 vosd
3[qe} T yewIo 935 0054
3[qe} T JeWIOq 929G 108V
3[qe} T 1O 995 1Ive
9[qe} T FeWIO, 99 00V6
TNAL O] PoIos aozé JOAIDH| dl qo_maew,%wmwm
TNELAO) posIosod V0.6 dVAdDH dnrayug NNMMWW
9[qE} T WO 99 00V8
3[qe)} T JeWIo] 99g 0.8
3[qe} T JeWIOq 993G 028
3[qe} T 1O 995 0£98
9[qE} T FeWIO, 999 0298
) 8L L oL o) \4 (xY) 145490
N £+N TN I+N N
DY 40 SINAINOD | SI¥ 40 SINILNOD | DI 40 SINALNOD | DI¥ 40 SINILNOD | 9D3¥ 10 SINILNOD ar IDViIL 41NAON JNVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

233

Appendix C. Trace Table Codes

Trace Table Codes

(yewrrog

a8e xyya1 s,10559201 | (DIDIAN) 2p0D 1dnrrayur JV1S) 10883001 K120009Y
00 00 00 00 pa[req jo ssaIppy 2D dumeN pa[red jo ssaIppy 1074 HOWJDH | 1osse001] doig ooy
paddoig
00 00 00 00 DIDIN 00 00 00 00 0074 HOWJIOH AO9YD ST I0SSAV0I]
doely,
8x 8x 8x 8x 8x 6004 2 Ser 9014195 INA
doely,
8x 8 8x 8 8x 8004 8x Serq a01a195 INA
doely,
8x 8x 8 8x 8x 2004 8x Serq 9014195 NA
doely,
8x 8x 8x 8x 8x 9004 8x Serq 9018195 NA
doely,
8x 8x 8x 8x 8x <004 8x Serq 9d1a195 NA
doedy,
8x 8x 8x 8x 8x 7004 8x Serq 9018195 NA
doedy,
8x 8x 8x 8x 8x €004 8x Se1q e01A19G INA
doely,
8x 8x 8x 8 8x 2004 8x el 14195 WA
doely,
8x 8x 8x 8x 8x 1004 8x Ser 9o1A195 A
doely,
8x 8x 8x 8x 8x 0004 8x Ser 9014195 INA

d[qe} T JBULIO] 935 901D
presn

uo Gurpus
‘NG 10] POAISSIY mﬁmwm.U:mu-ﬁmmwﬁxm
670D HAWNJOH Sunfey parreq
. ADINJdOH QA
INET 103 Potioso 8500 S| ang puweg sKow
‘NG 10] POAIISIY Topnd
L¥0D AAINIOH [puuey) 93e307]
o1 8T 28 (1)) A4 (xdY) L4S410
7+N €+N <HN T+N N

OHY 40 SINAINOD | 9HY 40 SINHINOD | DHY¥ 40 SINALNOD | 93¥ 40 SINHILNOD | O93I¥ 40 SINILNOD dr 3dvil ATNAON HINVN

(penunuoo) ssujue 8JAq-gg 10j S8pPoo 82el] ‘G| 8|qel

z/VM V6.3 Diagnosis Guide

234

Trace Table Codes

puaqy Hos
JO QWII je IS uny jo
duweN auj SI eeeeeeee RquNN pusqy ar Iaon pueqy yog Surm(
SI9YA\ -- eeerRRRR D SSAIPPY MAAINA | ST UUU SIUM --UUUD | ST XXX dIUM --XXX,D EERES NgVIDH doe1], puadsng
9[qe} ¢ JeUWLIO] 995 addd
puaqy Hos
FIVNSHD SSAPPY MAANA | (F9-2€ s1d) 201D AOL | (1€-0 sHd) 01D dOL EEEE! NAVAIOH | 19§V 9d.l] swnsay
BiEIn)
SsaIppe UInjoy S.I9[[eD 00 00 00 00 SSAIPPY MAAWA | Ted> 03 3s1d jo ypSuar] 03 3s11d jo ssarppy 00vd AdZdOH ys1d 19sre 1e3[)
onfea 19[ed JO ssalppe %@ snyy 10y 3s1d 00000000 sAeme (dON) ysturg
LANLVIDX XXXXXXXX [edI “PTY XXXXXXXX | JO IPPE ‘T XXXXXXXX St aneA XxxxAALA | raquunu 31xg XXXX0000 0F6d NXZJIDH aunnoy 3IXq [[ed
anfea I9[[ed JO SSaIppe 31x3 s1y} 10§ 3s1id | swreryurewr 03 Mok JUSS
STIVILIX XXXXXXXX B3I “FTH XXXXXXXX | JO IpPe ‘T XXXXXXXX | 9P0d WInIdy XXxXQ000 | I2quimnu JIXg XXxX0000 0864 NXZJIDH ystur 31xq [red
anfea I9[[ed JO SSaIppe J1xa smypy 105 3stid 9pod uInjaI A} Jo YSIuL]
LANIVIDX XXXXXXXX T8I “FTI XXXXXXXX | JO IPPe “T¥ XXXXXXXX | S9A[eY Y3og XXXXALAL | Ioqunu 31xg XxXxx0000 0261 NXZJIDH aunnoy 3IxXq [[ed
anfea I9[[ed JO SSaIppe J1xa smypy 105 3styd SMAADX 43 JIe)g
LANIVIDX XXXXXXXX T8I “FTI XXXXXXXX | JO IPPE “TY XXXXXXXX JO SSAIPPY XXXXXXXX | IdqUINU JIXT XXXX(0000 0164 NXZJIDH aunnoy 1Ixq [[ed
anfea I9[[ed JO SSaIppe J1xa snyy 105 3std JIX3 ST} JOJ MIIIX
STTIVILIX XXXXXXXX [T “FTI XXXXXXXX | JO IPPE “T¥ XXXXXXXX JO SSAIPPY XXXXXXXX | IdqUINU JIXT XXXX(0000 0061 NXZJIDH 11018 3IXH [[eD
passaooxd 3snl
00 00 00 OF 10 ‘500 | 00 00 00 00 10 (ETAID) quinN dNHdV dl d[MPON ANHIV
00 00 08 ‘00 00 00 00 SSAIPPY MIAVS SSAIPPY MAANA | ST UUU 9I9YM -~ UUUT | ST XXX 3IYM -~ XXX . 084 dINSIOH yxg dumpdeug
00 00 (eT4dD) _qunN ANFdV dl d[MPON ANHIV 10112 Wa)sAG e1a
00 0% 10 s00 00 00 08 SSaIPPVY MNIAVS SSAIPPY MAANA | ST UUU 9I9YM --, UUUT | ST XXX 9I9YM -~ XXX . 1084 dANSdOH | payoaut dumpdeug
(eTMdD) _qunN ANHdV dl o[MPOIN ANHIV puewwo? era
00 00 00 00 SSaIPPVY MIAVS SSAIPPY MAANA | ST UUU 9I9YM --, UUUT | ST XXX 3I9YM -~ XXX .5 0084 dANSdOH | pavoaut dumpdeug
9[qe} T eULIO] 395 H024
9[qe} ¢ JeUWIO] 995 aozd
9[qe} ¢ JeUWIO] 995 V04
9[qe} T JewIO] 995 8044
d[qe} ¢ jeuwlioq 995 9024
9[qe} ¢ JeUWLIO] 995 024
SurpueH 324D
aunpey Surmg
00 4074 HOIWJOH N 98k 2oed],
o1 8L 49 o1 o) A4 (xdy) 13S490
7+N €+N TN I+N N
OHY 40 SINALNOD | OH¥ 4O SINAINOD | DFY¥ 40 SINHAINOD | O3¥ 40 SINALNOD | O93¥ 40 SLNHINOD dl 3IdvVil 41NAON HINVN

(penunuoo) seuue 8jAq-zs 10 S8pPoo 8ol ‘G| 8|qel

235

Appendix C. Trace Table Codes

Trace Table Codes

236 z/VM V6.3 Diagnosis Guide

Trace Table Codes

Note:

1.

2.
3.

These fields are generated only by HCPPAH and HCPPAU. HCPVOD,
HCPVOS, and HCPVIR generate zeros (00 00 00 00).

CPSYSCD is filled in for non-APPC paths, Flags? is filled in for APPC paths.

IOR I TRQSCHED - Bit seven in this field indicates whether this field contains
the address of the TRQBK (the bit is on) or the address of the IORBK (the bit is
off).

If CC equals 0, the PTHBK Adderess is traced. If CC does not equal 0, the
PTHBK could not be located and the path ID requested is traced.

If a system error invoked a soft ABEND, which was set to SNAPDUMP by the
SET ABEND command, a value of 80 00 00 00 will be present. A value of 40 00
00 00 will be present if invoked by the HCPABEND macro with SNAPDUMP
as the defined ABEND type.

For Diagnose X'18' results, this is the DBCMAXSZ block size.

This flag byte is dependent on the operation type as defined by DBCSWTC2.
* When DBCSWTC2 bit 5 is on (X'04'), this field contains DBCDOPER

* When DBCSWTC2 bit 6 is on (X'02'), this field contains DBCBOPER

* When DBCSWTC2 bit 7 is on (X'01'), this field contains DBCA4SWT

* When none of the previous bits are on, this field contains DBC18SWT.

This field varies based on the temporary diagnostic code given to the customer
by the VM Service organization.

Appendix C. Trace Table Codes 237

Trace Table Codes

(F)IseN
urof “(1)93eIg 1m)

‘(1)sSerg jsanbay
a3essolN a3essap duAg 93essaA SJ0[S § ISIL] JO | (F)PIOM PO dukg (1)aPOIN_ PIO UOI}RZIUOIPUAG
du4g Jo $z 03 LT saifg JO 91 01 6 sa14q | dukg Jo g 0 T sANAg | SAYeIG IqUIBI [SS “(P)ISeN "0 (DPPON 1D | G61 INTddDH CINEREN|
(F11sen
urof ‘(1)93eIg)
‘(DsSerg
o3essaN o3essajy oukg a3essan S30[S § ISIL] JO | (F)PIOM MO dULg (1)9POIN_PIO
Uﬁxmm mO ¥C 03 L1 mw«%m wO 91 01 6 mw“—%m Ugm wO 0} T wwu—%m sajelg Hwn—gmz 1SS \Aﬂvvﬂmﬁz uuo) A.C@UOEIHHSU F061 INTddOH wwﬁogmwm OATIIDY
F11sen
(p)ss21ppy urof ‘(7)a¥eiS™ 1y
(P)M[Sewr Wd)SAS | SUNNOY UOTJEIILISA ‘(1)sSer
Sunedonreq ‘(p)suondo SI10[S § 1ST17 JO | (F)PIOM P07 dU4g “(1)?POIN PIO uonung 1SS
93essaN JUAS Jo $334q § 3811 | “(F)ssa1ppe MIHAIN ASINTAAOH | S93e)S IoqUBIN ISS ‘(P)MSeN "uuo) ‘(I)opoN 1D €061 WTddOH uoneZIUOINPUAS
(F)IseN
urof ‘(T)ayeig m)
(F)IseIN 28uey) “(1)s8er1
adueysu] ‘(F)SeN S}0[S 8 ISIL] JO | (F)PIOM 207 duAg ‘(1)2POIN” PIO aduey)
0 0| woyshg papauu0)) | SeIG WIS ISS “(F)IseN 'uuoD (1)poN 1) | 2061 INT1ddDOH Ayanosuuo)
(F1isen
urof ‘(1)93e1g~ LIm)
“(1)sSerg jsanbay
DY UOnEedLIDA apo) 101§ 8 ISIL] JO | (F)PIOM 00T dudg (1)°POIN” PIO uogezuoNPUAS
wwdmmwz Ugm MO mou%n—] IsI1q Hmm .H._mm I0 019/ Uoseay[COENSMN\VW mwu—wum HQQ&OE Hmm vavﬂmmz AHCOU Aﬁv@ﬁOEIHH‘DU 1061 EWHNHLUI w~m3~®>m
JAOINAHAA AOISAHAA00 AOIIATIAA 00 00 00 00 NS uondniayug
OYOIAFAA 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 RIVd dIS AHAA AHAd AHAA 1000 SOAdDH O/1 VX [eniIp
jsonbay
a3e103g 991
jo ad4£y 1oyjouy
10§ 93e 931015
ssaIppe 991 pasnun
0 0 0 ssaIppe s 19[[e) V¥Ad aged Tear3or 301 | 0420 TIIIOH | Apuszm)) asnoy
ssarppe a3e10)g 921, 10§
0 0 0 ssaIppe s 1a[[e) VA o3ed eor30r 3S0H | 0640 DAIdOH | 98ed SXS urelqO
OdIAATAT TIXNAHAY00 AOIVAIA™00 (AZ@QYVOO | FIN €N TIN TIN 4NS
0 00 00 00 00 00 00 00 00 00 00 00 00 00 AdAA AHA AAAdA 10<0 THIdOH uondnuur /1
8¢ 0¢ 8¢ 0¢C ST 0L 2 | (xdY) 14S440
7+N OHd €+N OHY ¢+N DA T+N O3d N O34 ar I1NAON TAVN
S+N DHY 40 SINHALNOD 40 SLNALNOD 40 SINHLNOD 40 SINHILNOD 40 SINAILNOOD 40 SINALNOD | HOVIL

(z 18WLI04) SBLUS 8]AQ-19 10 S8P0oD 8Jkl] ‘9] 8|qel

z/VM V6.3 Diagnosis Guide

238

Trace Table Codes

(F1Isen
utof “(1)a3e3s L)
(9)o17 “(1)s8erd uonedyHON
“a3essall puadsng a3essay puadsng S101S § ISIL JO | (F)PIOM MO dufg (1)3POIN_PIO puadsng
0 jo s334q 7 1N Jo $914q g IST1 | SIS IPqUIBIA ISS ‘(F)ISeN "uu0) (DPPON 1mD | €161 INTddOH © PIAIDIRY
F)1seN
()quUnN urof ‘(7)a¥e3g~ 1y
JO[S WRISAG 10wy ‘(1)s3erg
auwreN ‘(v)ox37 “(F)a1e18 SJ0[S § ISIL] JO | (F)PIOM 00 dukg “(1)3POIN” PIO aduey) ayeig
durejsowir], yeaqiesf] w)SAG 9J0UIRY | MON] WIRISAG 2J0WdY | S93LIG IOqUIDIA [SS (F)SeN "uuo) ‘(T)apoN_ LD 2161 W1ddDH wd)SAG 930wy
()IseN
urof ‘(7)91e3S™ 1Ny
“(1)s8er1
SuwreN 2014195 ad4L 12D S}0[S 8 ISIL] JO | (F)PIOM 07T duAkg (1)?POIN” PIO S)nsay
9P0D) WIN}ay [[eD) IDIAISG | JO SIdjORIeYD Q ISIL] | JO SIajoeIeyd § ISIL | S9jel§ JOqUIBIAl ISS (P)d[SEIN "Uu0D) (T)apoN_LInD 1161 W1ddDH 1D DIAIG
(F)1seN
urof ‘(T)ayerg am)
(AN “(1)s8erq
juaay “(7)apoD S}0[S 8 ISIL] JO | (F)PIOM 20T duAkg (1)?POIN” PIO
0 0 JuRAT ‘(F)oraZ | Sdlel§ AU ISS ‘(P)IseN "uuo) (T)PPON TmD | 0161 INIddDOH | Synsay juaag urof
(P)IseN
urof “(1)93eIg 1mn)
‘(1)s3erg
(£)om37 apoD S10[S 8 ISIL] §O | (F)PIOM 07T dukg (1)?POIN” PIO 9pOD wIniay
0| “(1)10qe 10y uoseay | WINY ASIIAJIDH | S1e15 JPqUIdN 1SS “(P)ISeN "uuo) (DPPON 1D | 6061 IW1ddDH | uoneziuoryduig
(F)Isen
urof ‘(1)93eIg L)
‘(1)s3erq
(P)OISLIN 210A SHA | (F)XISEIN Isedpreorg (T)uonpun,g SJ0[S § ISIL] JO | (F)PIoM 00 dukg (1)?POIN” PIO uorpuN,{ 194205
“(¥)x1seN asuodsay ON | “(F)D¥ MDOSIDH 190G ‘(£)o1a7 | sayeIS IPqUIBIA 1SS ‘(P)ISeN "uuo) (DPPON 1mD | 8061 INTddOH SZIUOIYIUAS
(P)IseN
urof ‘(1)93e1g~ 1Im)
(1)sSerg jsonbay
%o SJ0[S 8 3SIL] JO | (F)PIOM 20T duAkg (1)oPOIN” PIO UOReZIUOIYIUAS
0| MDOSIDH “(¥)o10Z asuodsay] 9j0A | SayeIg IPqUISIA 1SS ‘(F)ISeN "uu0) (1)epoN 1D | 061 IW1ddOH 03 Ajday
(F)IseN
(121838 urof “(1)aeis 1my
(p)onrea g | pasenbay ‘(1)are35 “(1)s8erd
S 19[[eD “(})SsaIppy PIO “(1)2d4L S}0[S 8 3SIL] JO | (F)PIOM 07T duAhg “(1)?POIN” PIO a3ueyD
0 wmiay s, 19[eD eD “(g)ordz | sajerg _qudIA 1SS ‘(P)IseN "uuo) (T)PPON TmD | 9061 IWT1ddDOH 9je)§ [8007]
8¢ o 8T 0T ST (i) q (x3Y) 14S440
7+N O3 €+N O T+N O3d I+N 934 N 934 all Sindow TNVN
S+N O34 40 SLNALNOD 40 SINALNOD d0 SINALNOD| dJ0 SINALNOD| d40 SINALNOD 40 SINALNOD | HOViL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

239

Appendix C. Trace Table Codes

Trace Table Codes

AdHAN ou 1

00 00 00 00
00 00 00 00
JI0
00
O<‘HHMOMWD Mmmmz ou wﬂ H@MM@U wo mmmhvﬁu<
TIATTISA 00 00 00 00 MIHIN Ou J1
S1AO9NSA 00 00 00 00 00 00 00 00
4SDd¥Usn 10 10
00 00 00 00 00 00 00 00 9poD UMy TATOIISN CINGREN
00 00 00 00 00 00 00 00| ADTA MDOSIDH L1SO9¥sN angasn SASNASN | 1S61 MSNIDH 108 MGASN
00
OVIATISN
s3eyy
uonouniqng
9107 apoD wImn3ay OVTIDISN
00 00 00 00| ISHNOHI ANFS 1SHNOTI ANES THATTISN R JO isedpeOIg pues
00 00 00 00 MDOSIDH MDOSIDH ISX 1SN AIASN | SsAPPVY SISNUSN | 0861 ASNdOH 313208 MGASN
(121035 maN Indino
‘(n)aye3s PO IndinQ
(1)s4g~dsng wmN Indino
‘(1)opoD uImnjoy (#)1ppy wmdy
(1)eras—yad mdmQ a[qe3 welsAs [SS a[qe; weysAs [SS | d[qey wessAs 1SS | “(1)eressydd ndug
(1)SOVTIIDAS AAd Ur SIO[S| Ul S)O[s JYSD ISIF | Ul S30[S S IsI | U SJO[S JySIo ISy “(1)s3erd
‘(1)oye3g~maN Induy | JyS31o 3811y JO Sae)S JO S93e}S IaquIaW JO S9je)s IaqUIOW | JO S93R}S IoquIDUL ‘(1)°POIN” PIO A ut a8ueyd
‘(1ayess prondur | raquiawr 165 nduy | 195 juermd ndino 1SS yuarmd nduy | 155 snoradxd yndug ‘(T)apoN_LInD G161 MAddDH 9)eIg 18207
(F1IseN
urof ‘(T)93ess 1am))
“(1)s8erq
(F)o197 ‘(p)wroishs SJ0[S § ISIL] JO | (F)PIOM 00 dukg (1)°POIN PIO wo)s4g [e007]
0 0| Sure3Suy jo seN | soreIs IqUIBIN ISS ‘(F)ISeN "uu0) (1)PpoN 1m) | $161 IW1ddDH | puadsng 03 pafed
8¢ o€ 8T 0T 8T o1 | (x@Y) LASJI0
7+N o739 ¢+N D31 T+N O3 I+N o739 N 244 ar| c1ndom TNVN
S+N OF¥ 40 SINALNOD 340 SINZLNOD 40 SINALNOD| d4O SINALNOD| 40 SINALNOD JO SINALNOD | HFDOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

240

Trace Table Codes

00
OVIATISN
s3epy 1 uonouNqNg
DNSIdHS 30\ PO uIn)ay OV IIONSN I9[[eD JO SSaIppV
1S4N0OTY ANES 154N0OTY ANdS TAAHTISN amnyreq
TVAIIHS IDOSIOH ADOSIOH ISXTILASN dArgdasn SASASN qa61 ASNIOH urof MI¥sN
SISIX® duou JI
00 00 00 00
10
ESlice)
ureyDIASNIvLL
JO SSaIppV 00
S}SIXo auou jt OVIITIASN
00 00 00 00 00 00
10
OV TIOUSN I9[[eD JO SSaIppV a3e103g 10
00 00 00 00 00 00 00 00 1213 03 SN THAFTASN Anuyg srqer, ysey
00 00 00 00 00 00 00 00 }XaU JO SSaIppy ISXId¥ASN angdasn 00 00 00 00 ¥<61 ASNIDOH IR[Rd J9ISN
00 00 00 00
00 00 LV1SdSXd
IVISOSXd
00 00 00 00 00 00 00 00 HAOWdSXd INNNTSSXd 00 00 00 00 paa@ay a8ueyD)
00 00 00 00 00 00 00 00 HAOWODSXd JISIN'ISSXd HAVN INHISAS 00 00 00 00 €961 ASNIOH 93e1s SN
0=JRASNOTA It
00 = DOVIITISN
00
OVTATISN
00 00
0=JI9ASNOTA #!
00 00 00 00 JIOTA ou It
10 00 00 00 00
00 00 00 00
SVIONSA 10 I3[[eD) JO SSAUPPY
00 00 00 00 00 00 00 00 THAHTISN med
00 00 00 00 00 00 00 00 aradsn d9anaA ISX1d¥dSN ARasn JddoT1da 00 00 00 00 <61 ASNADOH | uonedo[ay MFUsn
8¢ 0¢ 8¢ 0¢C ST (118 2 | (xdY) 14S440
7+N OId €+N DOHY ¢+N DA T+N O34 N O34 ar T1NAON TAVN
S+N DOHY 40 SINALNOD 40 SINAILNOD 40 SINAINOOD 40 SINAINOD 40 SINAILNOD 40 SINALNOD | HOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

241

Appendix C. Trace Table Codes

Trace Table Codes

pojerouad sem
Anjus aoexy a1oyMm
ssarppe 914g-§

MIXIDH
00 [TIdDH
INAXTdSAS HAOWdSXd OTIIOH
INOXTdSAS HAOWOSXd INAIIOH
ISX1dSAS NOISVVA NOTdOH A[reqor3 >pof
0 0 0 NIXT1dSAS OHSVVA DD| T100C @IVIDH | MIXVVA 1mboy
porerouad sem
Anus soexy aroym HMWMWM
ssarppe 914g-¥ TMIOH
00 ATIIDH
INIXIdSAS HAOWdSXd VTIdOH
INOX1dSAS HAOWOSXd INAQIIOH
ISXIdSAS NOISVVA NOT1IOH Afresor >pog
0 0 0 NIXTdSAS OHSVVA JD| 000C @IVIDH | NIXVVA 21mboy
00 00
sGepy
COEU%M&SW
DNS[dHS 90\ 9poD) wInjay 00 00 19[[eD JO SSaIppy
ISHNOTI ANAS| ISHNOTA ANHS dn-dexp
IVA[IHS MDOSIOH MDOSIOH ISXIdSAS INALSAS sgsnasn| 8s6l ASNdOH utof Ma¥sn
MAHIIN ou Ji
00 00 00 00
00 00 00 00
JI0
00
SVIIONSA SMIHIN Ou JT| I9[[eD JO SSAUPPY
TIATTISA 00 00 00 00 SIHAN ou 1
OTIDDASN 00 00 00 00 00 00 00 00
9poD Uy dSO9UsN 10 10
00 00 00 00 00 00 00 00 X1d3d aNds TATOEISN 1o11g A1day
00 00 00 00 00 00 00 00 MDOSIOH 11SD9dsn argdasn sgsnyusn| zs6l ASNdOH 3193205 MGISN
00 00
sGepy
QOwuogwﬂsm
910/ 9poD Uy 00 00 AseN Anay
00 00 00 00| ISHNOHY ANIS| ISHNOTI ANIS Anoy
00 00 00 00 MDOSIOH MDOSIOH ISXTdSAS andasn 00000000| 9561 MSNJIDH | Isedpeorg M¥UsN
8¢ 0€ 8T 0z 8T o1 | (x@Y) LASJI0
F+N OTA €+N OFA TN O3 I+N D39 N 2% arl oonaomw TNVN
S+N OF¥ 40 SINALNOD 340 SINZLNOD 40 SINAINOD| 40 SINZINOD| 40 SINALNOD JO SINAINOD| HFDVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

242

Trace Table Codes

00 00 00 00
(921m0g ¥OT)
a0y} poArada1 a8essaw
901nos pajsonbar UOTRATIOY
UOTJRURISap | Juas safessouwr aA0ux Do L
0 0 0 0 sowry jo Juno) | Arowew jo junod | 001z ATIIDH puo-03-pug
pojerouad sem
Anua soexy arym
ssarppe 914g-§
00
INAXTdSAS 00
INOX1dSAS 00
TSXTASAS NOASVVA [1e> pojtej
0 0 0 NIXTdSAS OdSVVA 20 S00¢ VTIdOH NOATXIOH
pajerausd sem
Anyuo aoexy aUYm
ssarppe 914g-¥
00
INIXTdSAS 00
INOX'1dSAS 00
TSXTASAS NOASVVA [1e2 [nyssooons
0 0 0 NIXTdSAS OdSVVA 20 00T VTIdOH NAATXIOH
porerouad sem
Anus ooex) aroym
ssaIppe 9}Ag-f
00 uorjedynou
INAXTdSAS HAOWISXd aSuey aeys
IWOX1dSAS JAOWODSXd 1SS Ue PpaAredaI
ISX1dSAS NOISVVA UOneZIUONDULS
0 0 0 NIXTdSAS OASVVA 20| 00T WAJDH | urewop uonesoy
pajerouad sem
Anua soexy arym VXD
ssarppe 914g-§ (TdOH
00 STIIOH
INAXTdSAS HAONWdSXd JTIdOH
INOX'1dSAS HAOWOSXd NAIdOH
TSXTASAS NOASVVA NOTIOH 201
0 0 0 NIXTdSAS OdSVVA JD| 200t AAVIOH | MNIXVVA 9ses[ay
8¢ 0¢ 8¢ 0¢C ST (118 2 | (xdY) 14S440
7+N OId €+N DOHY ¢+N DA T+N O34 N O34 al T1NAON TAVN
S+N DOHY 40 SINALNOD 40 SINAILNOD 40 SINAINOOD 40 SINAINOD 40 SINAILNOD 40 SINALNOD | HOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

243

Appendix C. Trace Table Codes

Trace Table Codes

aordwod 03 saded

a3e103s Arerfixne onanb pajed (901m0g
jo Surssadoxd | ay uo SYGAO JO YD) dwnsar
snouompuise | juno)) ‘urssadord 0} M[em IVA
10§ J1eM 0) pasned SnouoIyduAse Surmorre “paysrury
MIAOdIDH 105 Sunrem | juas sadessour aAouwr sey 10ssad01d
0 0 0 uoyM dOL| SHLd 3O I_qunN Arowswr Jo unod | 90Ig dOdddDH XY U0 a3k,
SMOSd
Gurssadoid doog
Surmony | 03 pey WDSTIdOH
urf 1eor8or urroyrad sawy Jo
0} HLIDMdDH | uno) “Surssadoxd (921m0g ¥Y7)
pasjoAur snouorpuise pawnsar sey y[em
181y NDSTAIDH 105 Sunrem ponanb | juss sa8essawr aaow 1vd oL,
0 0 ueym doL SHLJ JO I_dqUMN | SYFOSd JO Hunod) Arowsw Jo unod | §olc STIIOH ury [ear3o]
00 00 00 00
(921mn0g
Gurssadoxd MOT) pawmnsax
UINIIDAO UNIIDAO UNILIDAO snouorypuise sey 1a[em
SuI] [ed180] Pajoalap | jusem ul| [ed130] sem ur| [ed130[105 Sunrem ponanb | juas sadessowr aaow MO PO
ISl AIINTIJOH Uoym dOL | o4l saul JO Junoy | 9} sawm jo junos SHId JO quMN | SYFOSJ Jo JunoD Arowdw Jo juno) 701¢ INTIdOH qury [esrso]
00 00 00 00
(921mog
Gurssadoxd ADT) pawmnsar sey
S[HOIY} MuI| UNIIOAO UNIIDAO0 snouorpuise 1ossadoxd | xny
[eo18or oy uo Sumyoorq ue3aq | 3usem urf [ed180[sem yury 1ea1301 10§ Sunrem ponenb | juss seSessouwr saow uo sade, :OHOIL
OddOddOH Uaym OL | 3y} S9WH JO Juno) | 3y} SIWH JO Juno) SHLJ 0 _quUINN | SNOSJ JO Junod Arowsw Jo uno) | ¢0Ig dOdddOH qury [eardo]
pua
0} 9[}OIY} dY} 10§ (921n0g ¥Y7)
Jrem 03 INDSSIIDH pawnsar sey dAOW
Pa[ed IMITIIDH ssarppe | juas sagessaw aaow K10WRA 901y,
0 0 0 uaym qOL wInjar s,I9[[e) Lrowaw jo junod | 201¢ NTIIDOH pue-03-puy
00 00 00 00
(9dmog ¥o71)
amony) poAreda1 9dessowr
201nos pajsanbaz UOT}RATIORI(]
uoneunsap | Juds safessaw dAOwW oIy,
0 0 0 0 sawm jo umo) | Arowsw jo junod | 101¢ YTIIOH pus-03-pug
8¢ 0€ 8¢ 0¢ 19 ot 4 (x3Y) L4S410
7+N D3d €+N D3I ¢tN O3 I+N D3I N O34 al I1NAON TAVN
S+N 93¥ 40 SINALNOOD 40 SLNHINOD 40 SLNALNOD 40 SLNALNOD 40 SLNHILNOD 4O SINHINOD | HOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

244

Trace Table Codes

ssaIppe
SSIIppe S I9Sed[Y ssaIppe o0 wmnjar s Jo[e)d) 3207 Y3 JO 3o0[
9SEI[dI 9} 210J9q 9} JO 9Sed[aI Iy} o071 urdg
0 00 00 00 00 00 00 00 00 00 00 00 00 MIDOINAS Bye AIDOTINAS | S0F¢ NASIDOH | JO a1eys ases[ay
ssarppe
ssaIppe s JaureiqO SsaIppe 207 wmjar s JI9[[e) 3201 Y3 Jo SYNASIOH
ure3qo s} a10jaq | 320[3y} JO ure3qo Sy} BIA YO0
0 00 00 00 00 00 00 00 00 00 00 00 00 MIDOINAS Rye MIDOTINAS | ¥0¥¢ NASdDOH | widg jo areys 309
ssarppe
ssaIppe s JauteiqO ssaIppe 3207 wImjar s 19[ed 0] Y3 Jo
urejqo auj a10jaq | 20[Y} JO ure3qo oy} o0
0 00 00 00 00 00 00 00 00 00 00 00 00 MIDOTINAS Ioe AMDOTINAS €ove NASIDOH | uidg jo areys 399
ssaIppe
SSaIppe S I9Sea[Y ssaIppe o0 wmjaI s Jo[eD 3207 Y3 Jo 3o0[apPON
9seaal 9y} a10Jq 9} JO 9Sed[aI Iy} QATSNOXH WOIJ
0 00 00 00 00 00 00 00 00 00 00 00 00 MIDOINAS Bye AIDOTINAS | 20Fe NASIDH | 3007 widg aseapoy
ssarppe
ssaIppe s JaureiqO SsaIppe 207 wmjar s JI9[ed 3201 Y3 Jo XVNASIOH
ure}qo o} a210jaq | O0[9y} JO ureiqo ay3 PIA 9AISN[OXH
0 00 00 00 00 00 00 00 00 00 00 00 00 MIDOINAS Rye AMDOTINAS | T0¥€ NASIOH o7 uds 199
ssaIppe
ssaIppe s JauteiqO ssaIppe 3207 uInjar s J1a[e) P01 Y3 Jo
urejqo alj a10jaq | 20[Y} JO ure3qo oy} QAISN[IXT
0 00 00 00 00 00 00 00 00 00 00 00 00 MIDOTINAS Ioe AMDOTINAS 00¥¢ NASdOH Yoo uidg 399
SSaIPPVY SOp0)) IOLI JHM
af roirg 9p0D) UoSse 9POD) WINIdY | SSAIPPY e I9[[eD JOpeI] uonoun.j (4SAZS) eareanes | (VI (snotrep) | uIniay uonoung D
00 00 00 00
UOIIPUOD UNLIDAO ONAOJdDH
Surded/¥4A0d woxy DY ,AMHO, (92mo0g YH7)
' uo O} POAISIRI powINsaI I¥[em
32019 03 INDSSddOH (MJLTIIOH) MANDJ ‘paajosat
paed IMAOJIDH ssaIppe IX[eM MGINODJI | Iuas saessouwr aaow UOTIPUOd UNLIDAO
0 0 uaym qOL WINaI s I9[[eD) | 9y} sowry JO Juno)) Arowew jo uno) | £01Z AOddDH | 8urded 10 YgaOd
8¢ (113 8¢ 0T 18 1] 8 | (x3Y) 145440
7+N D3Y €+N DHY ¢+N DHY T+N OHY N D934 al T1NAON TAVN
S+N OHY¥ 40 SINALNOOD 40 SILNHILNOD 40 SINALNOOD 40O SINHILNOOD 40 SILNHLNOD 40 SINHINOD | HOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

245

Appendix C. Trace Table Codes

Trace Table Codes

0 10 9p0od
umal JNOJNIOH

“€9-T¢ sig
paxredun
Guraq 10ssadoxd DJNIDH
0 0 0 0 0| JO SSRIPPV :1€-0 S | €19¢ ‘dSAdOH | Iossadoxd syredupn
0 +€9-91 s¥d 0 10 9po>
wmal ¥dDdINIOH
AVI0dXdd ‘€9-T¢ snd
G1-8 sid
pasyred d4SAdOH
TADIIXAd Suraq rossadoxd ‘OJINIOH apeys
0 0 0 0 470 SN | JO SSAIPPV (1¢-0 SHd | TT9E ‘ASAdOH | rem pasyred sojug
(0 10 9pOd
umyar INSIOSIOH
€9-C€ sid
ssarppe
10ss2001d 19)SeIA JdNdDOH
0 0 0 0 0 MIN ‘TE-0 SN | TI9¢ "DINIOH T93SEUL UD}IMG
0 :€9-¢¢ sig
waur NdD
yredun :1g-91 sig
sad&3 ndd sad&) Ndd sad4y ndDd e sad&) ndd e
ITe 105 Syseur spredun | [re 105 yseur spredun o5 sysewr spredun | 105 yysew syredun ssarppe 10ssadoxd Jsew
0 JO £9-8% sa14g JO LF-TE SNhg 3O 1¢-91 saidg 3O ST-0 saidg T91SEIN -G1-0 sHd 019¢ OdINJIOH yredun yndug
ssarppe
ssarppe s 19)sonbay SsaIppe 3207 wImjar s Ia[reD) o[ayp Jo o] QAISNPXT
a3ueyd oy a10joq) jo adueyp ayy 03 3o urdg
0 00 00 00 00 00 00 00 00 00 00 00 00 @MIDOINAS Bye MIDOTINAS | L0F€ NASIOH paxeys aduey)
ssaIppe
ssarppe s 19)sonbay ssaIppe o0 wImnjar s a[red o[oy Jo o[poreyg
a8ueyd ayy 210599 ay jo adueyd ayy 03 oo urdg
0 00 00 00 00 00 00 00 00 00 00 00 00 @MIDOINAS PyPe MIDOTINAS | 90%€ NASADH | 2AIsn{oxg a8uey)
8¢ 0€ 8¢ 0¢ 19 0L 4 (xdy) 13S490
P+N O34 €+N D3I ¢tN DIY T+N D34 N O34 al I1NAON TAVN
S+N 93¥ 40 SINALNOOD 40 SLNHINOD 40 SLNALNOD 40 SLNALNOD 40 SLNHILNOD 4O SINHINOD | HOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

246

Trace Table Codes

INODTISXdd

DOTONXdd

XY yae]
4N9N0LV1 $SAIPPY $SAIPPY oywadg wogrelg
00 00 00 00 00 00 00 00 dIYHLIVT HIVLISLIV'] A4LVT 1919 9[PUeH I19-F9 | 1109 T1ZSdDOH Iaurejuo)
INOISXdd DOTONXAd Anyug yoye|
ANANOLVT SSAIPPV SSAIPPY dyadg wrogelg
00 00 00 00 00 00 00 00 dI¥HLIVT HIVLISLV] AALVT 1919 S[PUeH N9-F9 | 0T09 T1ZSdOH Iaurejuo)
INOISXdd OOTONXdd 3007 d1ed0[Ted
SSAIPPY SSAIPPY oyyadg uroge[J
00 00 00 00 00 00 00 00 ARIHLOOT AD0TOO0T A4O07T H9-¥9 S[pueH 19-¥9 9009 AZSIOH Tsurejuo)
INOTISXdd JOOTONXAd 3007 93Bd0[[Y
SSaIppY SSaIppY oywadg urogne[J
00 00 00 00 00 00 00 00 dIIHIDOT AD01O01 AdD0T 1979 S[PUeH Nq-F9 | G009 AZSIOH Iaurejuo)
INOTISXdd OOTONXAd 3207 183,
SSaIPPY SSaIppPY oywadg wropel]
00 00 00 00 00 00 00 00 dIIHLIOOT 001001 A4D0T 19-%9 9[PUeH Nq-F9 | ¥009 AZSIOH ISUrejuo)
INODTISXdd DOTONXdd oorun
SSIIppV SSAIPPY MZSIOH | dywadg uioperd
00 00 00 00 00 00 00 00 dIIHLDOOT JAD0T1O01 A4D0T H9-%9 S[PUeH N9-F9 | €009 SADIOH Iaurejuo)
INDTISXAd DOTONXAd Anyug yoorun
SSIPPY SSAIPPY oyyadg urrope[J
00 00 00 00 00 00 00 00 ARIHLOOT AD0TOO0T A4O0T H9-¥9 S[pueH 19-¥9 009 AZSIOH Tsurejuon
INDISXdd DOTONXAd ¥o0]
SSAIPPY SSIPPY oyyadg urone[J
00 00 00 00 00 00 00 00 dIIHIDOT AD01O01 AdD0T 1919 S[PUeH Nq-F9 | 1009 AZSIOH Iaurejuo)
INODTISXdd DOTONXAd Anyug spo
SSaIPPY SSAIPPY oyywadg urope[J
00 00 00 00 00 00 00 00 dIIHIDOT 001001 AdD0T 1979 9[PUeH Nq-F9 | 0009 AZSIOH Iaurejuo)
00 00 00 00
NS AIAY

(AHAA)V YOIVATAY (AHaDV uondnusiug
0 0 00 00 00 00 00 00 00 00 00 00 00 00 Add AJAY 10¢S LdIdOH nyL ssed O/1

xyyaxd

e + Ayqeded

SSAIPPY NAANA + wduo g1V
SSIPPVY ISOL] SSaIPpPY uoTje[SURI],
SSIIPPV NAOSV SSIIPPY S I9[[eD 00 00 00 00 00 00 00 00 mdino 1949 | renynp indug 1a-49 | 020 ALHIOH SSIPPY
8¢ 0€ 8¢ 0¢ 19 0L 1 (xdY) LAS410
P+N OIY £+N DAY TN DY T+N D3y N o3¥ arl naom —

S+N D93¥ 40 SINALNOOD 40 SINAILNOD 40 SILNALNOD 40 SINALNOD 40 SLNHINOD 4O SINHINOD | HOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

247

Appendix C. Trace Table Codes

Trace Table Codes

jrelg

UOT}eZIUOIYOUAG
anfep dukg dpoN | 004 4D3dOH 9PON DASI
JUSAH 9)ed0[[ed(]
MTIVINAH ANANONAH SSaIppY SS3IppVY oyadg wiogreld
0 0 00 00 00 00 00 00 00 00 AANAH M19-79 S[PUeH Nq-F9 | GT09 HZSdOH Jaurejuo)
JUSAY 3eI0[[Y
ATIVINAA ANANONAH SSAIPPV SSAIPPV oywadg wroprelg
0 0 00 00 00 00 00 00 00 00 MANAH 19-79 S[pPueH N9-¥9 | 209 HZSdOH Iaurejuo)
1xg Juaag AmoN
MTIVINAH ANANONAH SS3IpPpPV SS3IPpPVY oyadg wiogeld
0 0 00 00 00 00 00 00 00 00 MANAH M19-79 S[PUeH Nq-F9 | €09 HZSdOH Iaurejuo)
Anyuyg
juaay AJoN
ATIVINAA ANINONAT SSaIppV SSIppY oyadg wiogied
0 0 00 00 00 00 00 00 00 00 MANAH M19-79 S[PUeH Nq-¥9 | T09 HZSdOH Iaurejuo)
JIXH JUOAH JTeM
MTIVINAH ANANONAH SSAIPPV SSAIPPY oywadg uiopreld
0 0 00 00 00 00 00 00 00 00 AANAH H19-79 9[PUeH Nq-¥9 | 1209 HZSdOH Iaurejuo)
Axyug yuaAy jrepy
ATIVINAA ANANONAT SSaIppPY SSIppV oyadg wiogield
0 0 00 00 00 00 00 00 00 00 MANAH 19-79 S[PUeH Nq-F9 | 0209 HZSdOH Iaurejuo)
INOTISXdd DOTONXdd Uo3e] 93ed0[[Ed(
4NdN0OIVT SS3IPPV SS3IPpPVY oyadg wiogeld
00 00 00 00 00 00 00 00 dIIHLIVT HIVISIV'] A4IVT 979 S[PUeH Nq-F9 | 9109 T1ZSdDOH Iaurejuo)
INDISXdd JOOTONXAd Uo3e] 93ed0[[y
ANANOIVT SSAIPPY SSAIPPY oywadg uwioperd
00 00 00 00 00 00 00 00 dIYHLIVT HIVISLIV' A4LVT 1919 9[PUeH Nq-F9 | ST09 T1ZSdDOH Iaurejuo)
INODISXdd DOTONXAd yoje] IsaL,
ANANOLVT SSAIPPV SSAIPPV oywadg wroprelq
00 00 00 00 00 00 00 00 dIYHLIVT HIVLISLIV MAALVT 1919 S[pueH N9-F9 | ¥109 T1ZSdOH Iaurejuo)
LINOTISXAd DOTONXAd JIXH Yoyerun
ANdNOLVT SSIIPPY SSIIPPY oywadg wiogield
00 00 00 00 00 00 00 00 dIYHLIVT HIVISIV'] A4LVT 1919 S[PUeH Nq-F9 | €109 T1ZSdOH Iaurejuo)
INDISXdd DOTONXAd Anyug yoyerun
4NdN0OLVT SSaIppPV SSaIPpPV oyadg wiogield
00 00 00 00 00 00 00 00 dIIHLIVT HIVISIV'] A4IVT 959 S[PUeH Nq-F9 | CT09 T1ZSdOH Jaurejuo)
8¢ 0€ 8¢ 0¢ 19 ot 4 (x3Y) L4S410
P+N DY €+N DY ¢+N OHI T+N OFY N 534 ar TINAON ANVN
S+N DT 40 SINALNOD 40 SINALNOD J0 SINILNOD 40 SINHZLNOD | dJ0O SLNALNOD 40 SINALNOD | HOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

248

Trace Table Codes

SSAIPPY SSAIPPY apoD a8essayy nduy
dwreN HoJ uoneunsa | MMOS :€9-¢¢ sid | MIHAN :€9-C¢ sig | dWeN 30 95In0g dI dPON 9#>Imog ddel] :¢9-9G sid | 0204 ADMdDH | paydiewun) DASI
pqump aduanbag
pUdS €92 S
_quny 9duanbag
QAT (1¢-91 Sig
IPqUINN JUNOD) AIAd(SSAIPPY SUTT WOIj IAd(]
SSAIPPV MAMN'T 1A +€9-T¢ SHd Jur :G1-0 sig QWEN MUIT | MIAQT :€9-c¢ sid | dI10Z IOMAOH | 399uu0dsIq DASI
SSAIPPY IoquinN SSAIppPY U] 0} 1A
ADINT :€9-¢€ sig NIA_(T +€9-TE SN SWEN UIT [MIAQT :€9-C¢ sid | VI0L TOXdOH 39UU0) DAST
QOURII(T DqUINN age10)g SurureyqO
201D dOL SwreN uI'] 901A3(T €9-8Y SN | 6104 MDIdOH Aepp DASI
uonduny
pue [000301] apoD ar SsaIppy pa[re] a3essaj
o3essoIN :€9-7¢ SiId I0ITH :¢9-¢€ S | 9PON uoneunssqg AIHAN :€9-¢€ sid 102 IOMdOH | PU3S DNAS: DASI
9poD SSAIPPY SSAIPPY SOMdDH mQ pawry,
90®I], :€9-9G sHg QWEN HOJ [MIMOS :€9-¢¢ sHd AIHAN :€9-¢€ sid S10Z ADXdOH 23esSAN DASI
serq
[0[U0D :€9-TE SIg SSAIPPY
MADMOS €9-C¢ sHd
SSaIppY pakonsag
I9M[eD 1€-0 sid dI 2PON 1981e], QwieN O] | IOYHULdPT (1¢-0 S | TTO0Z SOMdOH 393205 DASI
SSaIPPY
ADIOS €9-T€ sid
umouy| pajear))
JL oweN 3HoJq Toyynuep] :1¢-0 sid 1102 SOMJIOH 393205 DASI
ar SSAIPPY MIMDS
SpON UoHeUnsaC] (aﬁ.bom sporg 10 wku wImyay . SSAIPPY porreq a3essoA
9PON :€9-C¢ Sig To1rg :¢9-¢¢ sid | MAHIN ‘€9-cc sid | 0104 ODMIOH puas DASI
opoD JSeIN JSeIN ADXdOH AymoN #8ueyd
91 199G Sig 1dI *€9-T€ sid OWIL | ISS MON €9-¢E Sid | 4002 GOMADH | L1andouuo) DASI
9jarduron
uoneZIuoIyduLkg
anfep dug spoN 1004 ADMdOH 9PON DISI
8¢ 0€ 8¢ 0¢ 19 ot | (xdY) LAS410
P+N OIY £+N DAY TN DY T+N D3y N o3¥ arl naom —
S+N D93¥ 40 SINALNOOD 40 SLNHINOD 40 SILNALNOD 40 SINALNOD 40 SLNHINOD 4O SINHINOD | HOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

249

Appendix C. Trace Table Codes

Trace Table Codes

2010 asuodsay

SN 0 10 JSeN apoD
JSEIN 398TeL :€9-7¢ SHG | IUSIIND) i€9-7¢ SHg | SNOIAL] :€9-T€ SHg anfep dudg opoN 9ORI], £€9-9G S I dPON 92Inog 9204 ADMdOH 93e DASI
SsaIppy
MIANT “€9-¢¢ sid
snyeig
U] ze-bT s
JUN0D) A01A3(]
juno) Surpus g juno) Surpus g XY :€2-91 sng
JUNOD) DATRDY agdexpeg a3essoN JUNo0D) 9013
aexped €9-8% snd 1€9-7¢ s 1€9-7¢ g XL G1-8 s
JUNO0D) JIep JUNOD) PapIoIYL juno) panang) JunoD Surpdwreg
1uno) 214g paadRy 1uno) 24 ueg adesoed :1¢-0 S1d | 9SessaN :[¢-0 S1g | 9SessIN :1¢-0 SNg 201A9(“£-0 siid §a0z TOAJIOH peoT U] D4SI
SSAIPPY
Io[[eD €9-¢¢ shd
a3essapA 10§
S[SEIN UOTRUnSA(] ai punog jutog pug
‘Ie-0 s¥d | 9PON uoheunss(| SwWeN 0 92Inog SSaIPPY MNIHAIN 0L ADMADH | Suryorey ON DASI
PquinN
1A €9-8F Sd
ssaIppy | Iequuny aousanbag 1011y
AIAMT €9-T¢ sid €9-8% SId | s[te3e(‘¢9-C¢ sHd IXQUOD LF-CE shg €202 MODIIdOH | 1ewlIo] eyed DASI
1aqumy aousnbag
o3essoN :€9-8F Sig
1aquny] aousnbag
EINEREN JEVIEEEE] AN
AUr Lp-ce shd
pqumy 2duanbag
aBexed 191 sHd
apoD
Ioquunpy duanbag 9orI], :¢9-9G sig Io11g
EINEREN fEV 1 K SSAIPPY SSAIPPY SSAIPPY 1aqumpy] auanbag
AU :G1-0 svd | AN -€9-¢€ sHd | MAIAMT -€9-¢€ sid | AIAAT *€9-¢¢ sid Kuony 1¢-¥¢ sig 0L MOAIOH AIIAMT D4SI
Juno)
JUNOSY ALY /PO sng PquinN
9p0D WInjayl 2707 sid s3elq :6€-9¢ sng 1A €9-8% shd
O/1 €9-8% snd SLSOS :6€-9¢ sid 1011g -£p-0F sid
(€:0) AND-MDD smeis O/1
DD Ly-te shd 9SULS :¢9-¢¢ SN | SISAd -6¢-C¢ shd ge-ce sigd IXAQUOD “TE-0 sid 1202 MODMADH | pawadxeun DASI
8¢ 0€ 8¢C 0T 19 ot 1 (x3Y) L4S410
PN DAY £+N DAY TN DY T+N D3y N o3¥ arl cnaow —
S+N OHY¥ 40 SINALNOO 40 SLNHILNOD 40 SINALNOOD 4O SINHILNOOD 40 SLNHLNOD 40O SINHINOD | HOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

250

Trace Table Codes

apod
Wy €9-7€ Sig

p8usy
98essaIN :1g-§ sHg

UOT}OAIIP o3essowr
JUDJU0D FeSSAIN JUU0D IFeSSIAN Ju2Iu0d 93eSSAN Juaju0d 93essay | a3essaIN /-0 Sig awreu Id[[ONU0D | 00F/ VMSJIDH IS[[ONU0D)
dnueap
dI °PON J[SeW 9pON | €04 ddDXdOH SSO[9PON OdSI
apod
uondaId :¢9-99 sNd

SS2IPPY 9p0od SSaIPPY SSAIPPY a8ueyd apowr
AN :€9-¢¢ sid a8er01g :£-0 Sig AAAMT €9-¢¢ sid AdAdT €9-c€ sid | 0€0Z MDIdOH yodsuery, D8]

I_quInN

1A :€9-8F S1G

101 :/¥-0F sad
I °PON
Al @PON :€9-0 sid IXQUOD TE-0 SIg | DT0L INAMdOH ayeoridng DASI

IquInN

1A :€9-8F NG

101 :L¥-0F sid
JuaAg
IXOIUOD T¢-0 SIg | 0L INAMAOH | 1011] 931a8(DASI

uaINg I0 IDquInN

odAL €98y spg| 01l :¢9-87 Sid

101 :L¥-0F sid
(¥z-L1) (91-6) (8-1) uorpawielq 10 1011] surer]
Toymg :€9-0 sid Iayng :€9-0 sid LPng «€9-0 SN | SPO L-CE Sid IXOIUOD T¢-0 SN | V0L INAMdOH punoquy 54sI
8¢ 0€ 8¢ 0c 8L 0L q (xdY) 13S4940
P+N Odd €+N DI ¢HN DII T+N O3 N 534 ar T1NAON JAVN

S+N O3¥ 40 SLINHILNOD 40 SINHLNOD 40 SINALNOD 40 SINHLNOD | 40 SLNALNOD 40 SINHLNOD | HOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

251

Appendix C. Trace Table Codes

Trace Table Codes

a3e103g

SSaIppy SsaIppy SS2IPPY YO0[g pajsonbay Qa1 pausy
00000000 wmy sIoMe) | MAANA J0isenbay | paulissy anjosqy SPIOM 91qnog 00000000 | 0€98 YIVAOH | #IM0sqV ureqo
SSaIPPY o3e101g va1g
SSAIPPY SSAIPPVY YP0[g Moo[g paudissy paisenbay paulny [eor8o|
SSAIPPY MAAWA S9[[eD | MAANA 101sonbay | pausissy anjosqy [e21307 3804 SPIOM a[qnod | XXX>X dI s Poid | 0798 SIVAOH ISOH ureiqo
00 00 00 00
dns AHaQY
JOIVAIAY (AF@DV ydnamayuy
0 0 0 00 00 00 00 00 00 00 00 AJd AHAY | 10S8 [IIOH O/1 1e21807]
dINLV ssalppe MNIAWA
2P0 Y d TquInu MSd PIO weiSog apod> uondnimuy
SSE[D I0JIUOIN ‘9p0d (Yory /z)
ssarppe Ydd uondooxyg ereq SSAIPPY 3Ne OII| 008 AIIDH | 3dnimeyur werdorg
apo)) uondniajuy
TeWIdlXy ‘SSaIppVy
MSd PIO Teurdixg NdD “1epPurere g 00 00 00 00 (yo1y /Z)
uondniroyug uonydnrayuy
0 0 [euIoIXy X3 O 0018 IXddOH [euIoIXy
SSaIppY
AIANA €9-C€ sid
DVIA 0wy e
0} J8uey) = 1008X
DVIA 10wy
€ 90TV = 0008X
DVIA dj0wy e
aseady = $008X
OVIN [e207] ®
aoerday = go00x
SSAIPPY DVIN OVIN [e207] ®
1mydepy = gox asea[y = $000X
SSAIPPY DVIN OVIN [e207] e
Surpuag = 10X 0} a8uey) = 000X
0I9Z 10 IdqUINN SSAIPPY DVIN DVIA [8007]
1A TeNMIA €9-8F Sid juaImy = 00X ' 90TV = 0000X
019Z 10 019z SSAIPPY 019z 0I9Z 10 SSAIPPY NOILLVYIAJO juswaSeuen
JSeIN w3sAS 1SS 1/F-¢ snd | 10 dI 1os0 JIADdd | MIASI :€9-2¢ sud 10 9dAY, :/-0 sng OVIN €9-91 sid G1-0 sid 10¥2 IWTINIOH SS3IPPV DVIN
8¢ 0€ 8¢ 0¢ 19 ot 4 (x3Y) L4S410
7+N D3d €+N D3I ¢tN O3 I+N D3I N O34 al I1NAON TAVN
S+N 93¥ 40 SINALNOOD 40 SLNHINOD 40 SLNALNOD 40 SLNALNOD 40 SLNHILNOD 4O SINHINOD | HOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

252

Trace Table Codes

payPoruNn 9g a3e103g oo[un
0 0| sseIppy owrexn] [edYy | OL $SAIPPY [eNMIA | SSAIPPY MAANA $S2IPPY SIA[ED | T10D SINAADH | SUIYDBIN [enjIip
P20 9g a8e103g O]
0 0| sseIppy owrex] [edy | OL $SAIPPY [eNHIA | SSAIPPY MAANA $S2IPPY SJA[[eD | 010D SINAADH | SUIYDBIN [enjIp
qdI4d1S TIdD 1s9n5) jo (yorv /2)
LSNIAIS D1ADIEIS (MSIDEIS) MSd 3s2nD ssa1ppe MAANA | S234q oy 19p10-mo] uondedraug
0 FAOWINANA 00 00 00 00 00 000000| ¥0sd AdJIDOH | uondnmsy 3sano)

AMLNIFIS

HAODIHIS

(MSADHIS) MSd 18915 00 00
ssarppe YIANA uondNISUl
0 0 00 00 00 00 FAONINAINA | 0054 NN¥IDH | 30N “uondadiapg

(02) ssarppe

SseN wer3org 0} JI0SS9D0I1]

1€9-7¢ sig €9-7¢ sng

0 :€9-¢ sng

PpIO SSaIppe woij

0 0 0 dDIS :1¢-0 sig OIS :T-0 sig | Jossavoid :[g-0 sid| 10AV dDSIOH | uononmsur JJS
(adr—
“ISNIHIS =)

(MSIDHIS) MSd 1SNDA NI VAIHIS OTADIFIS (v /2)
N'XIN'S'A) ‘HAODIAIS uondedrayug
0| €-0>IgdIS 1SenOA 00 00 INNIMD 00| T11V6 NIMIDH 3IS [eniIA

ssaippe ssaIppe

MIAWA FISA MAANA 39N
o (MSADEIS) MSd 1$9MDA (p1v/2)
(TIDDOSMANA) AN'XIN'SA) SPOJA 9IS [eNIIIA
TID Mopeys | ¢—0"MgHIS 3onDy 00 00 00 00 MIMD 00| 00V6 NIMJIDH ur 198() umy

AMLNIEIS

NNIAD

(MSADHIS) MSd 191D
ssarppe MAANA (1v/2)
0 0 00 00 00 00 FJAOWINANA | 00VS NNIIOH 1) Uy
a3e10)g
SSAIPPY SSAIPPY SSAIPPV Jo01g pauIniay 991 pausdy
00000000 wmiay s .1oeD SAANA SI9[[eD | PauIIay AN[OSqY SPIOM 3[qnoQ 00000000 | 0€/8 VIVADH | 2IM[osqy winiay
SS2IPPV o3e10)g 901
SSaIPPY SSaIPPV Y20[g Mo0[g pawmniay] pauiniay paulny [eordo]
SS2IPPY Wiy S,19[[e) MAAWA SIo[[eD | pawmiay 2m[osqy [ed1307 3501 SPIOM 3[qnoQq 00000000 | 0T/8 SAVIDOH 3SOH wInjoy
8¢ o€ 8T 0T 8T 01 a (xdY) LASJI0
P+N O3 ¢+N D3I TN O3 I+N O34 N 244 ar| S1ndom TNVN
¢+N 97Y 40 SINILNOD 40 SINILNOD d40 SINALNOD| 40 SINZINOD| 40 SINILNOD 40 SINALNOD| FDOVIL

(penunuoo) (z jew.io) seuus 8jAq-r9 Joj Sepod 8dei] '9[8|qe]

253

Appendix C. Trace Table Codes

Trace Table Codes

0 €9-cc snd

ssarppe Anuyg
0 0 0 0 0 108s9001 -1¢-0 sid | dddd ILLdDH | @oe1] dweg oy,
0 10 ananbay MYNOJ
0 10 YGIND PON | IAINDd Snotasid SSAIPPV MAANA SSAIPPV AAINOI SS9IPPYV S 19[[eD 1044 HI1ddOH STANDIANA
0 10 ananbaq YYNOJ
0 10 YGIND PON | IIIND Snotadid SSaIPPV JAANA SSAIPPV AAINOI SSaIPpV sJo[[eD | A0Zd HIddOH STNDIANA
aurer 98e10)g
0 0| SSIIPPY owWelL] [eay] 0 0 0] Vvo0zd HIddOH 9314 urerqQo
SSaIPPY SSAIPPY ALddDOH awrer] 93e10lg
0 0 0 QWL Te9y] AQAMSDIN | HLINYA [e21807 380H 8044 HIddOH 991 UINjoy|
(3s11 93ed poarosax

a3er10)s 921 WoIy sade
Bursstwr saded jo SJuRIU0D) SSaIPPY SIEHIg) SsaIppy paspeg a8er0ig
SSAIPPY UINIY SI9[[eD) | IUN0d) ANALXVSY DHLVISINA QuwIel] M[osqy OHIVISSXS a3eJ 1ed13077 5XS 9024 dXSdOH 9314 ureiqQo
so8eq
SANXSVSH Biliciiog) SSIIPPY SPUUOD) SSAIPPY paxoeg a8e103g
SSIIPPY WINIay s, 19[[eD 10 DINXSVSY OHILVLSNYA Juwer] IN[osqy DHLVISSXS aded [ea1807 SXS | F0/d IXSIOH 991 Wy
(NIVININDL) ajerdwor
(NIALSNDL) yurod Pa39[ep | HIOLSX O3 paaowt 9Z1s |Jed [e915 251015
SSAIPPE HNIOAS q-79 | Swnsal ueds 31q-§9 aquinu 31q-%9 Lqunu jig-y9 | urewr fenjoe 31q-y9 2718 1981} 119-H9 901D AWAdOH ure]N OdIN
8¢ 0€ 8¢ 0¢ 19 ot 1 (x3Y) L4S410
PN DAY £+N DAY TN DY T+N D3y N o3¥ arl cnaow —

S+N 93¥ 40 SINALNOOD 40 SLNHINOD 40 SLNALNOD 40 SLNALNOD 40 SLNHILNOD 4O SINHINOD | HOVIL

(penunuoa) (z jew.io) seujus 8lAq-r9 Joj S8PoI 8dei] "9/ 8|qel

z/VM V6.3 Diagnosis Guide

254

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1991, 2013 255

256

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel

IBM Corporation

2455 South Road
Poughkeepsie, NY 12601-5400
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The

z/VM V6.3 Diagnosis Guide

sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for

these purposes, see the IBM Online Privacy Policy at |http://www.ibm.com/|
—

rivacy| and the IBM Online Privacy Statement at [http:/ /www.ibm.com /privacy /|
etails} in particular the section entitled “Cookies, Web Beacons and Other
Technologies”, and the IBM Software Products and Software-as-a-Service Privacy
Statement at |http://www.ibm.com /software /info/product-privacyl

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at|[I[BM copyright and|
[rademark information - United States|(www.ibm.com/legal/us/en/
copytrade.shtml).

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 257

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

258 2/VM V6.3 Diagnosis Guide

Glossary

For a list of z/VM terms and their definitions, see [z/VM: Glossary

The z/VM glossary is also available through the online z/VM HELP Facility, if
HELP files are installed on your z/VM system. For example, to display the
definition of the term “dedicated device”, issue the following HELP command:

help glossary dedicated device

While you are in the glossary help file, you can do additional searches:

* To display the definition of a new term, type a new HELP command on the
command line:

help glossary newterm

This command opens a new help file inside the previous help file. You can
repeat this process many times. The status area in the lower right corner of the
screen shows how many help files you have open. To close the current file, press
the Quit key (PF3/F3). To exit from the HELP Facility, press the Return key
(PF4/F4).

* To search for a word, phrase, or character string, type it on the command line
and press the Clocate key (PF5/F5). To find other occurrences, press the key
multiple times.

The Clocate function searches from the current location to the end of the file. It
does not wrap. To search the whole file, press the Top key (PF2/F2) to go to the
top of the file before using Clocate.

© Copyright IBM Corp. 1991, 2013 259

260 z/VM V6.3 Diagnosis Guide

Bibliography

See the following publications for additional
information about z/VM. For abstracts of the
z/VM publications, see lz/VM: General Information),
GC24-6193

Where to Get z/VM Information

z/VM product information is available from the
following sources:

* [z/VM V6.3 Information Center]|
(publib.boulder.ibm.com/infocenter/zvm/
v6r3/)

+ [[BM: z/VM Internet Library]|
(www.ibm.com/vm/library/)

+ [[BM Publications Center| (www.ibm.com/e-
business/linkweb /publications/servlet/
pbi.wss)

* IBM Online Library: z/VM Collection, SK5T-7054

z/VM Base Library

Overview
* k/VM: General Information) GC24-6193

* Iz/VM: Glossary} GC24-6195
* k/VM: License Information) GC24-6200

Installation, Migration, and Service
o &/VM: Installation Guide] GC24-6246

* k/VM: Migration Guidel, GC24-6201

* k/VM: Service Guidd, GC24-6247

* k/VM: VMSES/E Introduction and Referencd,
GC24-6243

Planning and Administration
* &/VM: CMS File Pool Planning, Administration)|

nd OEemtionl SC24-6167

b/VM: CMS Planning and Administration),
SC24-6171

k/VM: Connectivity, SC24-6174

k/VM: CP Planning and Administratior,
SC24-6178

k/VM: Getting Started with Linux on System 2,
S5C24-6194

k/VM: Group Control System|, SC24-6196
k/VM: I/O Configuration} SC24-6198

© Copyright IBM Corp. 1991, 2013

* [z/VM: Running Guest Operating Systems,
SC24-6228

* l/VM: Saved Segments Planning and|

Administmtionl SC24-6229

* |z/VM: Secure Confiquration Guide} SC24-6230

* |/VM: TCP/IP LDAP Administration Guide|
SC24-6236

* |z/VM: TCP/IP Planning and Customization)
SC24-6238

* |z/0S and z/VM: Hardware Configuration Manager|

User's Guidd, SC33-7989

Customization and Tuning
s |z/VM: CP Exit Customization} SC24-6176
s |z/VM: Performance} SC24-6208

Operation and Use

s |z/VM: CMS Commands and Utilities Reference}
SC24-6166

e [z/VM: CMS Pipelines Reference, SC24-6169

e |z/VM: CMS Pipelines User’s Guide, SC24-6170
« R/VM: CMS Primer}, SC24-6172

 k/VM: CMS User’s Guidd, SC24-6173

e |z/VM: CP Commands and Ultilities Reference}
S5C24-6175

* [z/VM: System Operation} SC24-6233
e Iz/VM: TCP/IP User's Guidel SC24-6240
* [/VM: Virtual Machine Operation, SC24-6241

* [z/VM: XEDIT Commands and Macros Referencd,
SC24-6244

e Iz/VM: XEDIT User’s Guidel SC24-6245
» [CMS/TSO Pipelines: Author’s Edition} SL.26-0018

Application Programming

* [/VM: CMS Application Development Guidd,
SC24-6162

* /VM: CMS Application Development Guide for|

Assembled SC24-6163

* [z/VM: CMS Application Multitasking| SC24-6164
* |z/VM: CMS Callable Services Referencel, SC24-6165

s |z/VM: CMS Macros and Functions Referencel
SC24-6168

s |z/VM: CP Programming Services} SC24-6179

e lz/VM: CPI Communications User's Guide}
SC24-6180

261

http://publib.boulder.ibm.com/infocenter/zvm/v6r3/
http://www.ibm.com/vm/library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

* k&/VM: Enterprise Systems Architecture/Extended)
Configuration Principles of Operation} SC24-6192

* k/VM: Language Environment User’s Guide,
S5C24-6199

* k/VM: OpenExtensions Advanced Application|
Programming Tools| SC24-6202

* k/VM: OpenExtensions Callable Services Referencd,
5C24-6203

* k/VM: OpenExtensions Commands Referencd,
S5C24-6204

* &/VM: OpenExtensions POSIX Conformance
Document, GC24-6205

* k&/VM: OpenExtensions User’s Guide| SC24-6206

* k/VM: Program Management Binder for CMS|
5C24-6211

* k/VM: Reusable Server Kernel Programmer’s Guidd

ind Reterencgl, SC24-6220

* k/VM: REXX/VM Reference} SC24-6221
» k/VM: REXX/VM User’s Guide| SC24-6222
o k/VM: Systems Management Application)

Programmingi SC24-6234

s k/VM: TCP/IP Programmer’s Reference| SC24-6239
o [Common Programming Interface Communications|

Re[erencel SC26-4399

s [Common Programming Interface Resource Recovery|

Referencel SC31-6821

* k/OS: IBM Tivoli Directory Server Plug-in|
Reference for z/OS, SA76-0148

e k/OS: Language Environment Concepts Guidd,
SA22-7567

* k/OS: Language Environment Debugging Guide}
GA22-7560

* k&/OS: Language Environment Programming Guide}
SA22-7561

* k/OS: Language Environment Programming]

Reterencel SA22-7562

* k/OS: Language Environment Run-Time Messages,
SA22-7566

e Iz/OS: Language Environment Writingl
[nterlanguage Communication Applicationsl
SA22-7563

* kB/OS MVS Program Management: Advanced,
Facilities| SA22-7644

* k&/OS MVS Program Management: User’s Guidd

ind Reterencd, SA22-7643

Diagnosis
* k/VM: CMS and REXX/VM Messages and Codes,
GC24-6161

* k/VM: CP Messages and Codes, GC24-6177

262 z/VM V6.3 Diagnosis Guide

[z/VM: Diagnosis Guide, GC24-6187
[z/VM: Dump Viewing Facility) GC24-6191

[z/VM: Other Components Messages and Codesd,
GC24-6207

2/VM: TCP/IP Diagnosis Guidel, GC24-6235
z/VM: TCP/IP Messages and Codes|, GC24-6237
2/VM: VM Dump Tooll GC24-6242

2/OS and z/VM: Hardware Configuration|
Definition Messages, SC33-7986

z/VM Facilities and Features

Data Facility Storage Management
Subsystem for VM

D

(o)

[z/VM: DESMS/VM Customization) SC24-6181
[z/VM: DESMS/VM Diagnosis Guide} GC24-6182

[z/VM: DESMS/VM Messages and Codes,
GC24-6183

[z/VM: DESMS/VM Planning Guide, SC24-6184

[z/VM: DESMS/VM Removable Media Services),
SC24-6185

[z/VM: DESMS/VM Storage Administration,
SC24-6186

irectory Maintenance Facility for z/VM
z/VM: Directory Maintenance Facility Commands|

Reterencgl, SC24-6188

[z/VM: Directory Maintenance Facility Messages,
GC24-6189

z/VM: Directory Maintenance Facility Tailoring|
and Administration Guide| SC24-6190

pen Systems Adapter/Support Facility

* |zEnterprise System, System z10, System z9 and|

eServer zSeries: Open Systems Adapter-Express|
Customer’s Guide and Reference, SA22-7935

System z9 and eServer zSeries 890 and 990: Openl
Systems Adapter-Express Integrated Console]
Controller User’s Guide, SA22-7990

System z: Open Systems Adapter-Express|
[ntegrated Console Controller 3215 Support)
SA23-2247

System z10: Open Systems Adapter—Expressﬂ
[ntegrated Console Controller Dual-Port User’s|
Guidd, SA23-2266

Performance Toolkit for VM

lz/VM: Performance Toolkit Guidel SC24-6209
lz/VM: Performance Toolkit Reference] SC24-6210

RACF Security Server for z/VM

/VM: RACF Security Server Auditor’s Guide]
S5C24-6212

/VM: RACF Security Server Command Language|

Reterencel SC24-6213

lz/VM: RACF Security Server Diagnosis Guide}
GC24-6214

2/VM: RACF Security Server General User’s|
Guide, SC24-6215

2/VM: RACF Security Server Macros and)
[nterfaces| SC24-6216

2/VM: RACF Security Server Messages and Codes,
GC24-6217

2/VM: RACF Security Server Security
Administrator’s Guide] SC24-6218

L /VM: RACF Security Server System Programmer’s
Guidd, SC24-6219

L/VM: Security Server RACROUTE Macrd

Referencel SC24-6231

Remote Spooling Communications
Subsystem Networking for z/VM

k/VM: RSCS Networking Diagnosis, GC24-6223

k/VM: RSCS Networking Exit Customization,
SC24-6224

k/VM: RSCS Networking Messages and Coded,
GC24-6225

k/VM: RSCS Networking Operation and Use}
SC24-6226

L/VM: RSCS Networking Planning and)

Contigumtionl SC24-6227

Prerequisite Products
Device Support Facilities

Device Support Facilities: User’s Guide and)

Referencel GC35-0033

Environmental Record Editing and
Printing Program

Environmental Record Editing and Printing|
Program (EREP): Reference, GC35-0152

Environmental Record Editing and Printing|
Program (EREP): User’s Guide, GC35-0151

Bibliography 263

264 z/VM V63 Diagnosis Guide

Index
A

ABEND macro 70
abnormal end (abend)

AVS (APPC/VM VTAM Support)
abnormal end 14, 188
AGW SET ETRACE command 186
AGW SET ITRACE command 185

AVS 188 creating dumps 183
CF 63 debugging 183
checklist for reporting diagnosing dumps 184
CMS 189 displaying dump information 185
CP 189 dumps
GCS 189 creating 183
RSCS 189 diagnosing 184
CMS 69 displaying information 185
code processing 184
106, reason code 030B 146 formatting and displaying trace records 185
778 157 processing dumps 184
804 157 setting external tracing 186
80A 157 setting internal tracing 185
878 157

CP, reason for 14

CRR server 91

dump 126
description of type 51
dumping to DASD 51
dumping to tape 51
reading 52
specifying output device 51

GCS 131

hard 13

overview 2

using system trace data to diagnose problems

BEGIN command 15, 124
BLDL macro 143
BLOCKDEEF utility command 125
boundary box usage 171
branch entry
FREEMAIN (type X'0B') entry 114
GETMAIN (type X'0A") entry 113

problem types 3 byte alignment on terminal output 24, 25
processing, GCS 131
program check, processing 132
reason for, CP 14 C
SES server 91 calling IBM for assistance, data needed 9
;Of;’ E 1417 CCW mapping 167

S 5 CF (Coupled Facilities) service machine
types of 13 debugging 63

virtual machine 15

work area 132
AbnormalEnd API 70
active disk table (ADT) 72
active file table (AFT) 72
active task 141
ADDMAP command 177, 184
address range, restricting tracing to 29
ADT (active disk table) 72
AEB block 138

SIEAEQ 138

VMCSCHDX 139
AFT (active file table) 72
AGW SET ETRACE command 186
AGW SET ITRACE command 185
alter contents of storage 76
altering storage contents 32
analyzing data 4
anchor blocks, storage 150

APPC/VM synchronous event (type X'0C') entry 115

appending the map 177, 184
applications, debugging 147
Assert Facility 52

audience of this document xiii

determining status 63
diagnosing problems 64
processing a dump 64
checking free storage 152
checklist
for performance problem
hardware failure 191

inadequate system parameters 191
infinite loop in a virtual machine 191

infinite loop in CP 191
infinite loop in RSCS 191
for specific problem
CMS abend 189
CP abend 189
CP wait state 190
GCS abend 189
incorrect or unexpected output
RSCS abend 189
RSCS wait state 190
virtual machine wait state 190
clock comparator 20
CMDBUF 167
CMNDLINE (command line) 72

191

185

automatic generation of CMS abend dumps 74

© Copyright IBM Corp. 1991, 2013 265

CMS (Conversational Monitor System)
abnormal abend processing 69
checklist for reporting abends 189
dump file printing 76
dump generation, automatic 74
dump reading, abends 75
pipelines

debugging 81

incorrect output 87

operation exception 85

pipeline stall 88

PIPMOD 81

program exception 81

protection exception 83

TRACE option 88

using temporary stages to debug 87
reading abend dumps 75

CMSCB (OS control blocks) 72

collecting TSAF error information 175

command
ETRACE

AVS 186

SFS 97

TSAF 179
INDICATE 35
ITRACE (for SFS) 97
LOCATE 35, 58
MONITOR 35
QUERY SRM 35
QUERY TRACEFRAMES 37
SET DUMP 52
SET ETRACE (for TSAF) 179
SET ITRACE (for AVS) 185
SET TRACEFRAMES 8, 37
summary for debugging 21
support 165
to collect and analyze system information 35
tracing 39

command and console Support 165

common dump receiver 123

common lock, GCS 136

common storage
anchor blocks (CSAB) 150
management 157
preserving contents while dump finishes 127

Communication Task Queues
CMDBUF 167
Operator Reply Elements (ORE) 167
ORE 167
WQE 167
Write Queue Elements (WQE) 167

configuration file for GCS 99, 124

console log
definition of 7
sample, SFS 92
sample, TSAF 176

control block
description 53
HCPCPEBK 60
HCPFRMTE 61
HCPIORBK 59
HCPPFXPG 54
HCPRDEV 57
HCPSAVBK 60
HCPSVGBK 60
HCPSYSCM 55
HCPVDEV 59

266 z/VM V6.3 Diagnosis Guide

control block (continued)
HCPVMDBK 55
controlling display of messages 65
controlling trace information 28
coupling facility, debugging 63
CP (Control Program)
abnormal end 13
checklist for
reporting abends 189
wait state 190
disabled wait 18
enabled wait 18
execution block 60
trace table
locating 37
CP SET DUMP command 51
create
AVS dump 183
dump 47
GCS module map 124
TSAF dump 177
TSAF map 177
CRR server abnormal end 14
CSAB - common storage anchor blocks 150
CVT (Communications Vector Table) 170
CVTSECT (CMS Communications Vector Table) 72

D

data compression services, GCS 169
data needed before calling IBM for assistance 9
data sheet, problem inquiry 9
DDR (Dasd Dump Restore) 16
debug
abnormal end
AVS 188
CF 63
CMS 69
cp 13
CRR 91
GCS 131
SFS 91
TSAF 175
virtual machine 15
AVS
abnormal end 188
creating dumps 183
diagnosing dumps 184
displaying dump information 185
dumps 183
formatting and displaying trace records 185
processing dumps 184
setting external tracing 186
setting internal tracing 185

using system trace data to diagnose problems

CF service machine, debugging 63
CMS
abend processing 69
abend, finding reason for 69
abend, types of 69
collection information 70
commands, debugging 65
dumps, creating to debug 74

dumps, creating when specific message is received 76

module load map 69
nucleus load map 69
printing dump file 76

185

debug (continued)
CMS (continued)
tips 73
tracing 67
useful information 70
using CMS to debug 74
CMS pipelines
calculating displacements 82
incorrect output 87
operation exception 85
pipeline stall 88
program exception 81
protection exception 83
recreating a program exception 82
TRACE option 88
using temporary stages 87
commands summary 21
cp
abend dump 51
control blocks, looking at 53
debugging in a virtual machine 51
reading abend dump 52
data compression errors 172
data needed before calling IBM 9
determining the cause of a problem 9
GCSs
ABEND DUMP macro 126
abnormal end 131
common storage management problem 157
common storage, preserving 127
control blocks 133
Dump Viewing Facility to process dumps 132
dumping facilities 123
dumps, creating 126
external trace records 120
external tracing facilities 117
GDUMP command 126
GTRACE macro 100
I/0 158
interactive debugging support 124
internal tracing facilities 99
ITRACE command 100
load error 146
preserving common storage 127
program check 132
program, where loaded 145
SDUMP macro 126
SDUMPX macro 126
SYSTEM RESTART command 127
trace facility 128
TRACERED utility 119
TRSAVE command 119
TRSOURCE command 117
VMDUMP command 127
how to start 1
I[/0 164
identify the problem 3
interactive 23
introduction 1
loop 16
pipelines, CMS
calculating displacements 82
incorrect output 87
operation exception 85
pipeline stall 88
program exception 81
protection exception 83

debug (continued)
pipelines, CMS (continued)
recreating a program exception 82
TRACE option 88
using temporary stages 87
problem types 9
servers
abnormal end 91
collecting error information 91
creating file pool server dump 95
CRR 91
diagnosing a server dump 96
formatting trace records 96
printing a server dump 97
processing a server dump 96
sample console log 92
setting external tracing 97
setting internal tracing 97
SFS 91
using console log 92
using server dumps to diagnose 95
TSAF
abnormal end 175
collecting error information 175
creating TSAF dump 177
displaying trace records 178
displaying TSAF dump information 178
formatting trace records 178
printing TSAF dump 178
processing TSAF dump 177
sample console log 176
setting external tracing 179
trace table entry format 180
trace table trailer record format 180
TSAF QUERY command 181
using the console log 176
using TSAF dumps to diagnose 176
unexpected result 15
wait
CP disabled wait 18
CP enabled wait 18
virtual machine disabled wait 19
virtual machine enabled wait 20
with z/VM facilities 12
defining separate printer for trace data 26, 29
DELETE macro 143
device characteristics 163

diagnosing
AVS dump 184
CF dump 64

TSAF dump 178
diagnosis with key control blocks 53
dispatch queue 139
dispatcher (type X'01') entry 103
display
AVS dump information 185
AVS trace records 185
real machine data 23
TSAF dump information 178
virtual machine data 23
DISPLAY command 23, 65, 124
DMSABE (abend routine) 71
DMSABN macro 70
DMSITP 73
DMSITP routine 70
does a problem exist? 2

Index

267

dump
abnormal end dump 126
analyzing 124
AVS
creating 183
diagnosing 184
displaying information 185
processing 184
CF 64
communication controller storage 48
CP 47
CP restart
obtaining copy of 48
when to use 16, 18, 20
creating 47
definition 5
formatting trace entries 53
GCS 126
GDUMP 126
generation, automatic 74
information included in 47
locating
control block information 53
module and entry point addresses 53
RDEVs and VDEVs 53
printing information 53
problems helped by 48
PSW values, viewing 53
reading 52
real machine data 49
register contents, viewing 53
SDUMP 126
SDUMPX 126
setting up the system for 48
single virtual machine 47
snapdump 47
stand-alone 47
to DASD 51
to tape 51
TSAF
creating 177
diagnosing 178
printing 178
processing 177
types of 47
used in problem determination 13
virtual machine data 49
VMDUMP 127
DUMP command 17, 23, 25, 49, 65, 124
DUMP command to print virtual storage 25
DUMP operand of SYSTEM_USERIDS statement in system
configuration file 52, 96, 177
Dump Viewing Facility
displaying dump information 53
DUMPSCAN command 76
features for GCS dumps 124
obtaining a GCS map 183
processing GCS dumps 132
PRTDUMP command 76
TSAF trace entries 180
DUMPSCAN command 125

E

ECRLOG (extended control registers) field 71
ETRACE 8, 131
ETRACE command 117

268 2/VM V6.3 Diagnosis Guide

ETRACE command (continued)
AVS 186
SFS 97
TSAF 179
ETRACE GROUP 117
external interrupt (type X'02') entry 104
External Interrupt Handler Work Area (EXTWA) 206
external trace
buffer
format of 118
locating 118
facilities, GCS 117
record, formatting and displaying 120
servers 97
EXTOPSW (external old PSW) 71
EXTSECT (external interrupt work area) 72
EXTWA - External Interrupt Handler Work Area 206

F

FCBTAB (file control block table) 72
fetch-protected storage 124
filtering 40
finding evidence of a problem 4
formatting AVS trace records 185
FPRLOG (floating-point registers) field 71
fragmentation, storage 152
frame table control block 61
free storage 152
FREEMAIN
goes into an infinite loop 157
via SVC (type X'09') entry 112

G

GCS (Group Control System)

abnormal end 14, 131

checklist for reporting abends 189

common Lock 136

configuration file 99, 124

control blocks 193

data compression 169

debug 99

debug, dumping facilities
common dump receiver 123
rules of authorization 123

debug, external tracing facilities
displaying external trace records 120
ETRACE command 117
ETRACE GROUP 117
external trace table formatted entries, examples
formatting external trace records 120
TRSOURCE command 117

debug, interactive debug support
analyzing dumps 124
CP Commands 124
dumping VSAM information 125

debug, internal tracing facilities
GTRACE macro 100
internal trace table format 100
ITRACE command 100

dump processing 132

external trace table formatting entries, examples
entry type X'03' 122
entry type X'05' 122
entry type X'08" 122

122

GCS (Group Control System) (continued)

external trace table formatting entries, examples (continued)

entry type X'09' 122
entry type X'0A" 123
entry type X'0B' 123
entry type X'0E' 123
internal trace table format
data 102
header 100
internal trace table format, trace header entries 100
APPC/VM synchronous event (type X'0C') 115
branch entry FREEMAIN (type X'0B) 114
branch entry GETMAIN (type X'0A") 113
dispatcher (type X'01') 103
external interrupt (type X'02') 104
FREEMAIN via SVC (type X'09') 112
GETMAIN via SVC (type X'08') 111
GTRACE (type X'0E") 116
I/0 interrupt (type X'03) 106
IUCYV signal system service (type X'07') 110
program interrupt (type X'04') 107
SIO (type X'06') 109
SVC interrupt (type X'05") 108
load error 146
locating 128
nucleus constant area 193
obtaining a GCS map 183
service point trace entries 116
trace 128
trace table 135
virtual machine that created dump 127
GCTYTD control program 122
GDUMP 126
general I/0O
options
CHAR 158
CLOSE 158
HALT 158
MODIFY 158
OPEN 158
START 158
STARTR 158
table 161
generating CMS abend dumps automatically 74
GENMOD command 69
GETMAIN
goes into an infinite loop 157
via SVC (type X'08') entry 111
getting information AVS trace entries 187
GIOTB 161
GPRLOG (general purpose registers) field 71
GSB (Gotten Storage Blocks) 153
GSBB (block of gotten storage blocks) 153
GSBB, system-wide description of 156
GTF header 121
GTRACE 131
GTRACE (type X'0E") entry 116
GTRACE macro 100
guest operating system problem 1

H

halt execution (HX) in CMS 70
hang

condition 2, 4, 20

system 20

user 21

hard abnormal end 13

hardware
checklist for reporting failure 191
failure 2

HCPCPEBK control block 60
HCPFRMTE control block 61
HCPIORBK control block 59
HCPPFXPG control block 54
HCPRDEYV control block 57
HCPSYSCM control block 55
HCPVDEV control block 59
HCPVMDBK control block 55
how to find the machine ID 135
how to start debugging 1

I/0 (Input/Output)
debugging 164
interrupt
(type X'03') entry 106
handling 162
request and response block 59
IDENTIFY macro 143
identifying the problem 3
incorrect results
checklist for reporting 191
description 2
hardware failure 191
inadequate system parameters 191
infinite loop in a virtual machine 191
infinite loop in CP 191
infinite loop in RSCS 191
INDICATE command 35
infinite loop
checklist for reporting in a virtual machine 191
checklist for reporting in CP 191
checklist for reporting in RSCS 191
definition 2
information sources that describe z/VM's condition 4
internal trace table
GCs
locating 128
locating in common storage 129
locating in private storage 128
locating last trace entry 129
TSAF 180
internal tracing
facilities, GCS 99
server virtual machines 97
interrupt
control blocks 162
handling, I/O 162
introduction to debugging 1
IOSAVE 159
IOSECT (I/0O interrupt work area) 72
ITRACE 8, 128
ITRACE command
AVS 185
GCS 100
SFS 97
TUCV (Inter-User Communications Vehicle) 146
anchor block 147
debugging applications 147
path ID block 148
signal system service (type X'07') entry 110
tracing IUCV 147

Index

269

TUCV (Inter-User Communications Vehicle) (continued)
user ID block 147

K

key
control blocks 53
page 153

L

LASTCMND field 71
LASTEXEC field 71
LINK block 138
LINK macro 142
load
error, GCS 146
list, virtual machine 143
map
definition of 5
generation 69
information contained in 5
obtaining a 5
maps 66
LOAD command 69
LOAD macro 142
LOADCMD command 165
LOCATE command 35, 58
locating CP control blocks in storage 35
locking function 127
loop
condition in virtual machine 2,7
CP disabled loop 16
debugging 16
infinite
checklist for reporting in a virtual machine 191
checklist for reporting in CP 191
checklist for reporting in RSCS 191
description 2
problem type 3
program 35
virtual machine disabled loop 17
virtual machine enabled loop 17
LOWSAVE (debug save area) 71

M

machine check 15
machine ID 135
macro

BLDL 143

DELETE 143

GTRACE 100

IDENTIFY 143

LINK 142

LOAD 142

SYNCH 143

XCTL 142
major SACBs fields 151
MAP option of GENMOD command 69
MAP option of LOAD command 69
MCKOPSW (CMS machine check old PSW) 71
messages

controlling display of 65

description and use 4
minor SACBs fields 151

270 z/VM V63 Diagnosis Guide

MODMAP command 69
module load map 69
MONITOR command 35

N

nucleus
load map
debugging CMS 69
definition of 5
information contained in 5
obtaining a 5
NUCON
changes 170
CMS nucleus constant area 70
extension 197
GCS nucleus constant area 193
information 166
mapping 193

O

obtaining a GCS load map 183
ORE 168

P

page key 153
path

ID block 148

information 149
performance, slow 2
PGLOCK 163
PGMOPSW (program old PSW) 70
PGMSECT (program check interrupt work area) 72
PGMWA - Program Interrupt Work Area 207
pipeline

CMS 81

debugging 81

incorrect output 87

operation exception 85

pipeline stall 88

PIPMOD 81

program exception 81

protection exception 83

TRACE option 88

using temporary stages to debug 87
PIPMOD 81
preface xiii
prefix page 54
prerequisite knowledge xiii
PREVCMND field 71
PREVEXEC field 71
printer output 25
printing

CMS dump file 76

TSAF dump 178

VM Dump Tool, using 53

with the VM Dump Tool 53
private storage anchor blocks (PSAB) 150
problem

identifying 3

inquiry data sheet 9

recreating 165

type

hang condition 4

problem (continued)
type (continued)
loop 3
performance 4
unexpected results 3
wait 3
processing a dump
AVS 184
GCS 132
TSAF 177
program
check 132
check debugging 36
exception, CMS 69
exception, CMS pipelines 81
interrupt (type X'04') entry 107
load 145
loops 35
management 142
temporary fix (PTF), applying 1
Program Interrupt Work Area (PGMWA) 207
PRTDUMP command 76
PSAB - private storage anchor blocks 150
PTF (program temporary fix), applying 1
purpose of this document xiii
PWS (Program Status Word)
definition of 6
key 14 124
value, viewing 53

Q

QUERY AUTODUMP command 65, 75
QUERY command 27

QUERY SRM command 35

query system feature, condition, or event 26
QUERY TRACEFRAMES command 37
QUERY TRFILES command 120

R

RDEV, how to locate 57
reading
CMS abend dump 75
CP abend dumps 52
dump 52
real device control block 57
reason code 030B 146
recreating the problem 165
register
access 6
contents, viewing 53
control 6
definition 5
floating point 6
general purpose 6
use 6,73
repetitive output 2
restart, system 127
return code 4
RSCS (Remote Spooling Communications Subsystem
Networking)
checklist for reporting abend 189
checklist for wait state 190
running task 141

S

SACB
major SACBs 151
minor SACBs 151
scanning 152
save area block 60
saving trace tables 44

SDUMP 126
SDUMPX 126
server

abnormal end 14
console log 92
dump
creating 95
diagnosing 96
printing 97
processing 96
use to diagnose 95
Service Point (SP) trace entries 116
SET AUTODUMP command 65, 74
SET DUMP command 52
SET ETRACE command
AVS 186
TSAF 179
SET ITRACE command
AVS 185
SET TRACEFRAMES command 8, 37
setting
external tracing
AVS 186
TSAF 179
internal tracing, AVS 185
setting system feature, condition, or event 26
SFS (Shared File System)
debugging
abnormal end 91
collecting error information 91
creating file pool server dump 95
diagnosing a server dump 96
displaying trace records 96
printing a server dump 97
processing a server dump 96
sample console log 92
setting external tracing 97
setting internal tracing 97
using console log 92
using server dumps to diagnose 95
ETRACE command 97
ITRACE command 97
SFS server abnormal end 14
SID 160
SIDTABLE 160
SIE - NUCON Extension 197
SIE extension mapping 197
SIE information 166
SIO (type X'06') entry 109
slow performance 2
SNAPDUMP Command 49
soft abnormal end 14
spool command 92
SPOOL command 176
stall of CMS Pipelines 88
stand-alone dump utility 50
state block (STBLK) 136
AEB block 138
LINK block 138
mapping 201

Index

271

state block (STBLK) (continued)
SVC block 138
task waiting 137
wait count 137
STBLK - state block 136
STDEBUG command 65
storage
alteration, tracing 31
anchor blocks
common storage anchor blocks 150
mapping 205
private storage anchor blocks 150
contents alteration
STORE (Guest Storage) command 76
STORE (Host Storage) command 76
ZAP command 76
ZAPTEXT command 76
contents, altering
host storage 33
virtual machine storage 32
fragmentation 152
management
common 157
GCS component 157
mapping 203
problems 157
tracing 158
system-wide description of 156
task block 155
STORAGE statement in system configuration file 8, 37
STORE (Guest Storage) command 32, 76
STORE (Host Storage) command 33, 76
STORE command 65, 124
STORE STATUS command 33, 34
STORMAP command 66
subchannel ID table 160
SUBPMAP command 66
subpools, task block 156
summary of
changes xvii
steps to follow when a TSAF abend occurs 175
steps to follow when an AVS abend occurs 188
z/VM debugging commands 21
SVC block 138
SVC interrupt (type X'05') entry 108
SVC Interrupt Handler Work Area (SVCWA) 206
SVC save area (SVCSAVE) 73
SVCOPSW (SVC old PSW) 70
SVCSAVE (SVC save area) 73
SVCSECT (SVC interrupt work area) 72
SVCTRACE command 65, 66
SVCWA - SVC Interrupt Handler Work Area 206
symptom record
definition 9
displaying 53
duplicate, locating 53
for AVS 184
symptoms of problems
message
compared with return code 4
message identifier 4
message text 4
parts of 4
return code compared with message 4
SYNCH macro 143
system
abnormal end 70

272 z/VM V6.3 Diagnosis Guide

system (continued)
common area 55
hangs 20
information, collect and analyze
INDICATE command 35
LOCATE command 35
MONITOR command 35
parameters checklist for problem reporting 191
restart 127
trace data to diagnose TSAF problems 179
SYSTEM command 27
system configuration file
STORAGE statement 8, 37
SYSTEM_USERIDS statement, DUMP operand 52, 96, 177
SYSTEM_USERIDS statement in system configuration file 52,
96, 177
system-wide description of storage 156
system-wide description of TSHBs and GSBBs 156

—~

task
active 141
block (TBK) 136
block mapping 199
block storage 155
block subpools 156
control blocks 153
ID table (TIDTB) 140
load list 143
running 141
storage header block (TSHB) 153, 156
storage headers (TSHs) 153
waiting 137
TBK - task block 136, 199
terminal output 24
TEVC (trace entry verification code) 101
TIDTB (task ID table) 140
trace
capabilities in EXECs 67
CMS Pipelines 88
code paths 41
command 8
definition of 7
entry
AVS 185
capturing 39
contents 38
filtering 39
format 38
limiting 39
TSAF 178, 180
wrapping 39
entry verification code (TEVC) 101
ETRACE 8, 131
events in virtual machine with TRACE command 27
external, AVS 186
external, TSAF 179
GCS 128
GTRACE 131
1/0 devices 41
information, controlling 28
internal, AVS 185
ITRACE 8, 128
Iucv 147
program management 141
real I/O 39

trace (continued)
restricting to address range 29
run a CP command 31
selectivity 30
SNA tracing tools 9
stopping 32
storage alteration 31
storage management 158
successful events 30
table
CP, locating 37
entries 164
GCS 135
saving 44
using 130
viewing 45
table entries
AVS 185
CP 38,209
GCS 100, 164
TSAF 178, 180
task management 141
TRACE 8
TRSAVE 8
TRSOURCE 8
using 37
virtual machines 41
TRACE command 15, 17, 27, 65
TRACE option of CMS Pipelines 88
TRACERED utility 119, 121
tracing 8
trap use with AVS 185
TRSAVE command 119
TRSOURCE command 41, 117, 121, 179, 186
TSAF (Transparent Services Access Facility)
abnormal end 14, 175
collecting error information 175
creating TSAF dump 177
debugging 175
displaying trace records 178
displaying TSAF dump information 178
dumps
creating 177
diagnosing 178
printing 178
processing 177
use to diagnose 176
formatting trace records 178
internal trace table
entry format 180
trailer record format 180
printing TSAF dump 178
processing TSAF dump 177
QUERY command 181
sample console log 176
SET ETRACE command 179
setting external tracing 179
trace table entry format 180
trace table trailer record format 180
using dumps to diagnose 176
using the console log 176
TSAF QUERY command 181
TSAFDVF MAP 177
TSH (Task Storage Headers) 153
TSHB (Task Storage Header Blocks) 153

U

unexpected result
checklist for reporting 191
description 2
determining the cause 3
hardware failure 191
inadequate system parameters 191
infinite loop in a virtual machine 191
infinite loop in CP 191
infinite loop in RSCS 191
type of error 15

user hangs 21

user ID
block 147
trace entry 135
using

console log 176
system trace data to diagnose
AVS problems 185
TSAF problems 179
traces 37
TSAF dumps to diagnose problems 176
using this document
audience xiii
prerequisite knowledge xiii

\'

VAD 170
viewing
AVS trace entries
using DUMPSCAN 186
using the Dump Viewing Facility 186
using TRACERED 186
trace tables 45
TSAF trace entries
using DUMPSCAN 180
using the Dump Viewing Facility 180
using TRACERED 180
virtual device control block 59
virtual machine
abnormal end 15
checklist for wait state 190
data, displaying or dumping
byte alignment on terminal output 25
DISPLAY command 23
DUMP command 23
printer output 25
terminal output 24
VMDUMP command 49
descriptor block 55
disabled wait 19
enabled wait 20
load list 143
that created GCS dump 127
virtual machine control block (VMCB) 135
Virtual Machine Control Block (VMCB) 207
VM Dump Tool
CP dumps 52
printing dump information 53
reading a dump 52
VMCB - virtual machine control block 135
VMCB - Virtual Machine Control Block 207
VMDUMP command 17, 49, 65, 71, 127
basic examples 26
example for CMS 50

Index

273

VMDUMP command (continued)
example for SFS 95
example for TSAF 177
VMDUMP records
format 62
VMDUMPTL command
debugging save areas 60
displaying symptom record information 53
displaying the RDEV 57
formatting CP control blocks 54
formatting trace entries 53
locating descriptor blocks 55
VSAM
anchor block 171
debugging 172
dumping information 125
work areas 171
VSCS printing formatted control blocks 125
VSCS, 1/0 trace 164
VTAM
I/0 trace 164
printing formatted control blocks 125
work areas 171

W

wait
count 137
problem type 3
wait state
checklist for CP 190
checklist for RSCS 190
checklist for virtual machine 190
in virtual machine 2, 6
work area
VSAM 171
VTAM 171
WQE 168

X

XA virtual machine 99
XC virtual machine 99
XCTL macro 142

Y4

ZAP command 76
ZAPTEXT command 76

274 z/VM V6.3 Diagnosis Guide

Product Number: 5741-A07

Printed in USA

GC24-6187-02

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information

	How to Send Your Comments to IBM
	Summary of Changes
	GC24-6187-02, z/VM Version 6 Release 3
	Hiperdispatch Support
	Large Memory Dump Support

	GC24-6187-01, z/VM Version 6 Release 2
	Support for z/VM Single System Image Clusters

	GC24-6187-00, z/VM Version 6 Release 1

	Chapter 1. Introduction to Debugging
	How to Start Debugging
	Does a Problem Exist?
	Abnormal End
	Unexpected or Incorrect Result
	Infinite Loop
	Wait State
	Hang Condition
	Slow Performance

	Identifying the Problem
	Return Codes
	Messages

	Analyzing the Available Data
	Dump
	Nucleus Load Map
	Registers
	Program Status Word
	Console Log
	Traces
	Symptom Records

	Determining the Cause
	Data You Need Before Calling IBM for Assistance
	Problem Inquiry Data Sheet

	How to Use z/VM Facilities to Debug
	Abends
	CP Abend
	Hard Abend
	Soft Abend
	Reasons for the CP Abend

	CF Service Machine Abend
	CMS Abend
	SFS or CRR Server Abend
	GCS Abend
	TSAF Abend
	AVS Abend
	Virtual Machine Abend (Other than CMS)

	Unexpected Results
	Loops
	CP Disabled Loop
	Virtual Machine Disabled Loop
	Virtual Machine Enabled Loop

	Wait States
	CP Disabled Wait
	CP Enabled Wait
	Virtual Machine Disabled Wait
	An Example of a Virtual Machine Disabled Wait

	Virtual Machine Enabled Wait

	Hang Conditions
	System Hangs
	User Hangs

	Use of z/VM Debugging Commands

	Chapter 2. Debugging Interactively
	Commands That Display and Dump Machine Data
	Terminal Output
	Printer Output

	Commands That Set and Query System Features, Conditions, and Events
	Commands That Monitor Events
	Controlling the Trace Information
	Restricting the Trace to an Address Range
	Selectivity
	Tracing Successful Events
	Tracing Storage Alteration
	The TRACE CMD Option
	Stopping the TRACE

	Commands That Alter the Contents of Storage
	Altering Contents of Virtual Machine Storage (STORE Guest Command)
	Altering Contents of Host Storage (STORE Host Command)
	Simulating the Hardware Store Status Facility (STORE STATUS)

	Commands to Collect and Analyze System Information
	What to Do If Your Program Loops
	Debugging with CP after a Program Check

	Chapter 3. Using Traces to Debug
	Locating the CP Trace Table
	Trace Entries
	Limiting the Trace Entries Recorded
	Designating Entries to Be Captured or Filtered
	More Information on Filtering

	Tracing I/O, Data Code Paths, and Virtual Machines
	I/O Trace Example
	Trace Table Example
	The problem
	The research
	The solution

	Data Trace Example 1
	Step A
	Step B
	Step C
	Step D

	Data Trace Example 2
	Step A
	Step B
	Step C

	Saving Trace Data on Tape or DASD
	Factors That Affect Saving Trace Data

	Viewing the Trace Tables
	Factors affecting TRACE Table Pages

	Chapter 4. Creating a Dump
	Types of Dumps
	Setting Up the System for a Dump
	Dumping Real or Virtual Machine Data
	Commands That Dump Real or Virtual Machine Data
	The DUMP Command
	The SNAPDUMP Command
	The VMDUMP Command

	Stand-alone Dump Utility

	Chapter 5. Debugging CP
	Debugging CP in a Virtual Machine
	Abend Dumps
	Reading CP Abend Dumps
	Using the Assert Facility
	Reading the Dump with the VM Dump Tool
	Printing Dump Information from the VM Dump Tool

	Looking at Key Control Blocks
	HCPPFXPG: The Prefix Page
	HCPSYSCM: The System Common Area
	HCPVMDBK: The Virtual Machine Descriptor Block
	Locating Descriptor Blocks from a Dump

	HCPRDEV: The Real Device Control Block
	Using a Radix Tree Structure to Locate RDEVs

	HCPIORBK: The I/O Request and Response Block
	HCPVDEV: The Virtual Device Block
	HCPCPEBK: The CP Execution Block
	HCPSAVBK and HCPSVGBK: The Save Area Block
	HCPFRMTE: The Frame Table Entry
	VMDUMP Records: Format and Content

	Chapter 6. Debugging CF Service Machine Problems
	Determining the Status of the CF Service Machine
	Steps to Follow When CF Service Machine Abend Occurs

	Finding the CF Service Machine Dump
	Processing a CF Service Machine Dump

	Diagnosing Problems for CF Service Machines

	Chapter 7. Debugging CMS
	Debugging Commands
	Using the SVCTRACE command

	Tracing Capabilities in EXECs
	Nucleus Load Map
	Module Load Map
	CMS Abend Processing
	Finding the Reason for the CMS Abend
	Types of CMS Abends
	Collecting Information
	Register Use
	Some Debugging Tips

	Using CMS to Debug

	Setting Machines to Automatically Create Dumps
	Generating CMS Abend Dumps
	Reading CMS Abend Dumps
	Looking at Dump Errors

	Creating Dumps in Case of Messages
	Printing a CMS Dump File

	Commands That Alter the Contents of Storage
	Diagnosing SFS Related Application Errors
	Diagnosing CMS File System Errors
	Diagnosing Data Compression Services System Errors
	When Calling IBM Software Support
	Diagnosis Tools Available

	Chapter 8. Debugging CMS Pipelines
	Debugging a Program Exception in CMS Pipelines
	Calculating the Displacements of the Failing Module
	Recreating the Problem
	Examples
	Example of a Protection Exception in CMS Pipelines
	Example of an Operation Exception in PIPMOD

	Debugging Incorrect Output From CMS Pipelines
	Adding Temporary Stages to Write Out the Data
	Example

	Using the CMS Pipelines TRACE Option

	Debugging a CMS Pipelines Stall
	Example

	Chapter 9. Debugging the SFS Server or CRR Recovery Server
	Summary of Steps to Follow When a Server Abend Occurs
	Using the Console Log
	Using Server Dumps to Diagnose Problems
	Creating a Server Dump
	Processing a Server Dump
	Diagnosing a Server Dump
	Formatting and Displaying Trace Records

	Printing a Server Dump

	Using System Trace Data to Diagnose Problems
	Setting Internal Tracing
	Setting External Tracing
	Other Diagnostic Facilities

	Chapter 10. Debugging GCS
	Internal Tracing Facilities
	Using the ITRACE Command and GTRACE Macro
	Formats of Internal Trace Entries
	Trace Header Format
	Trace Data Format
	Service Point (SP) Trace Entries

	External Tracing Facilities
	Using the TRSOURCE Command
	Locating the External Trace Buffer
	Format of the External Trace Buffer

	Using the TRSAVE Command
	A TRSOURCE/TRSAVE Command Example

	Using the CP TRACERED Utility
	A TRACERED Utility Example

	Using the QUERY TRFILES Command
	General Trace Information

	Formatting and Displaying External Trace Records
	Examples of Formatted External Trace Table Entries

	Dumping Facilities
	The Common Dump Receiver
	Rules of Authorization

	Interactive Debugging Support
	Using Authorized Control Program (CP) Commands
	Analyzing Dumps
	Dump Viewing Facility Features for GCS Dumps

	Dumping VSAM Information

	Creating GCS Dumps
	The GDUMP Command
	The SDUMP Macro
	The SDUMPX Macro
	The ABEND DUMP Macro
	The SYSTEM RESTART Command
	The VMDUMP Command
	Preserving Common Storage
	How to Find the GCS Virtual Machine That Created a Dump

	Using the GCS Trace Facilities
	ITRACE
	Locating the GCS Internal Trace Table
	In Private Storage
	In Common Storage
	Locating the Last Trace Entry in Storage or in a Dump

	Using the Trace Table
	ETRACE
	GTRACE

	Processing Abends
	The Abend Work Area
	Program Checks

	Processing GCS Dumps with the Dump Viewing Facility
	Information Used by the Dump Viewing Facility

	NUCON and SIE
	Virtual Machine Control Block
	How to Determine the User ID That Created a Trace Entry
	How to Locate the GCS Common Lock

	Task Management
	Task Block
	State Block
	WAIT COUNT Field in a State Block
	LINK Block
	SVC Block
	Asynchronous Exit Block (AEB)
	The Dispatch Queue
	How to Find the Task ID Table
	How to Find Which Task Is Running
	Tracing Task and Program Management

	Program Management
	Task Load List
	Virtual Machine Load List
	How to Find Where a Program Is Loaded
	GCS Load Error

	IUCV
	Debugging Applications
	Tracing IUCV
	The IUCV Anchor Block (IUCBK)
	The User ID Blocks (IUCID)
	The Path ID Table (IUCPT)
	How to Find Information about a Path

	Storage Management
	Storage Anchor Blocks
	Description of the Storage Anchor Control Blocks (SACBs)
	Important Fields in Major SACBs
	Important Fields in Minor SACBs
	Checking for Storage Fragmentation
	Scanning the Major and Minor SACBs
	Checking Free Storage on Any Given Page
	Finding the Key for a Given Page
	Control Blocks Describing the Storage Owned by a Task
	How to Find the Storage Belonging to a Given Task
	How to Check What Subpools Belong to a Given Task
	System-Wide Description of Storage
	System-Wide Description of TSHBs and GSBBs
	Common Storage Management Problems
	Tracing Storage Management

	General I/O
	IOSAVE
	The Subchannel ID Table (SIDTABLE)
	The General I/O Table (GIOTB)
	I/O Interrupt Handling
	Interrupt Control Blocks
	How to Find What Pages Are Locked by PGLOCK
	Finding Pages Not Paged in After a Page Fault
	How to Find the Characteristics of a Device

	I/O Debugging
	Trace Table Entries
	Recreating the Problem

	Command and Console Support
	LOADCMD Command
	NUCON Information
	SIE Information
	CMDBUF
	WQE and ORE

	VSAM
	Data Compression Services
	Application Migration Considerations

	NUCON Changes
	VAD Information
	Boundary Box Usage
	VSAM Anchor Block

	VTAM/VSAM Work Areas
	Helpful Hints for VSAM debugging
	Debugging Data Compression Errors
	An Example of Control and Data Flow in GCS

	Chapter 11. Debugging TSAF
	Summary of Steps to Follow When a TSAF Abend Occurs
	Using the Console Log
	Using TSAF Dumps to Diagnose Problems
	Creating the TSAF Map
	Creating a TSAF Dump
	Processing a TSAF Dump
	Diagnosing a TSAF Dump
	Displaying the TSAF Dump Information
	Formatting and Displaying Trace Records in a Dump
	Printing a TSAF Dump

	Using System Trace Data to Diagnose Problems
	Setting External Tracing
	Viewing TSAF Trace Entries
	Trace Table Entry Format for TSAF

	Interactive Service Queries

	Chapter 12. Debugging AVS
	Using AVS Dumps to Diagnose Problems
	Obtaining the GCS Load Map
	Creating an AVS Dump
	Processing an AVS Dump
	Diagnosing an AVS Dump
	Displaying the AVS Dump Information with DUMPSCAN
	Formatting and Displaying Trace Records in a Dump

	Using System Trace Data to Diagnose Problems
	Setting Internal Tracing
	Setting External Tracing
	Viewing AVS Trace Entries
	Trace Table Entry Format for AVS
	Getting Information about Trace Entries

	Interactive Service Queries
	Summary of Steps to Follow When an AVS Abend Occurs

	Appendix A. Problem-Specific Checklists
	CP Abend Checklist
	CMS Abend Checklist
	GCS Abend Checklist
	RSCS Abend Checklist
	CP Wait State Checklist
	Virtual Machine Wait State Checklist
	RSCS Wait State Checklist
	Application Program checklist for Unexpected Output
	Checklists for Performance Problems
	An Infinite Loop in CP
	An Infinite Loop in a Virtual Machine
	An Infinite Loop in RSCS
	Hardware Failure
	Inadequate System Parameters

	Appendix B. GCS Control Blocks
	NUCON — GCS Nucleus Constant Area
	SIE — NUCON Extension
	TBK — Task Block
	STBLK — State Block
	SMAB — Storage Management
	ANCH — Storage Anchor Block
	EXTWA — External Interrupt Handler Work Area
	SVCWA — SVC Interrupt Handler Work Area
	PGMWA — Program Interrupt Work Area
	VMCB — Virtual Machine Control Block

	Appendix C. Trace Table Codes
	Notices
	Privacy Policy Considerations
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

